scholarly journals Genetics of Focal Segmental Glomerulosclerosis and Human Immunodeficiency Virus–Associated Collapsing Glomerulopathy: The Role of MYH9 Genetic Variation

2010 ◽  
Vol 30 (2) ◽  
pp. 111-125 ◽  
Author(s):  
Cheryl A. Winkler ◽  
George Nelson ◽  
Taras K. Oleksyk ◽  
M. Berenice Nava ◽  
Jeffrey B. Kopp
Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 446
Author(s):  
Kevin M. Rose ◽  
Stephanie J. Spada ◽  
Rebecca Broeckel ◽  
Kristin L. McNally ◽  
Vanessa M. Hirsch ◽  
...  

An evolutionary arms race has been ongoing between retroviruses and their primate hosts for millions of years. Within the last century, a zoonotic transmission introduced the Human Immunodeficiency Virus (HIV-1), a retrovirus, to the human population that has claimed the lives of millions of individuals and is still infecting over a million people every year. To counteract retroviruses such as this, primates including humans have evolved an innate immune sensor for the retroviral capsid lattice known as TRIM5α. Although the molecular basis for its ability to restrict retroviruses is debated, it is currently accepted that TRIM5α forms higher-order assemblies around the incoming retroviral capsid that are not only disruptive for the virus lifecycle, but also trigger the activation of an antiviral state. More recently, it was discovered that TRIM5α restriction is broader than previously thought because it restricts not only the human retroelement LINE-1, but also the tick-borne flaviviruses, an emergent group of RNA viruses that have vastly different strategies for replication compared to retroviruses. This review focuses on the underlying mechanisms of TRIM5α-mediated restriction of retroelements and flaviviruses and how they differ from the more widely known ability of TRIM5α to restrict retroviruses.


2013 ◽  
Vol 305 (8) ◽  
pp. F1228-F1238 ◽  
Author(s):  
David L. Gasser ◽  
Cheryl A. Winkler ◽  
Min Peng ◽  
Ping An ◽  
Louise M. McKenzie ◽  
...  

Focal segmental glomerulosclerosis (FSGS) and collapsing glomerulopathy are common causes of nephrotic syndrome. Variants in >20 genes, including genes critical for mitochondrial function, have been associated with these podocyte diseases. One such gene, PDSS2, is required for synthesis of the decaprenyl tail of coenzyme Q10 (Q10) in humans. The mouse gene Pdss2 is mutated in the kd/kd mouse model of collapsing glomerulopathy. We examined the hypothesis that human PDSS2 polymorphisms are associated with podocyte diseases. We genotyped 377 patients with primary FSGS or collapsing glomerulopathy, together with 900 controls, for 9 single-nucleotide polymorphisms in the PDSS2 gene in a case-control study. Subjects included 247 African American (AA) and 130 European American (EA) patients and 641 AA and 259 EA controls. Among EAs, a pair of proxy SNPs was significantly associated with podocyte disease, and patients homozygous for one PDSS2 haplotype had a strongly increased risk for podocyte disease. By contrast, the distribution of PDSS2 genotypes and haplotypes was similar in AA patients and controls. Thus a PDSS2 haplotype, which has a frequency of 13% in the EA control population and a homozygote frequency of 1.2%, is associated with a significantly increased risk for FSGS and collapsing glomerulopathy in EAs. Lymphoblastoid cell lines from FSGS patients had significantly less Q10 than cell lines from controls; contrary to expectation, this finding was independent of PDSS2 haplotype. These results suggest that FSGS patients have Q10 deficiency and that this deficiency is manifested in patient-derived lymphoblastoid cell lines.


1997 ◽  
Vol 13 (5) ◽  
pp. 401-404 ◽  
Author(s):  
CATHERINE A. BRENNAN ◽  
JULIE YAMAGUCHI ◽  
ANA S. VALLARI ◽  
ROBERT K. HICKMAN ◽  
SUSHIL G. DEVARE

Renal Failure ◽  
2001 ◽  
Vol 23 (3-4) ◽  
pp. 533-541 ◽  
Author(s):  
Luigi Moriconi ◽  
Ciro Lenti ◽  
Rodolfo Puccini ◽  
Antonio Pasquariello ◽  
Paolo Rindi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document