Simultaneous removal of organic and inorganic pollutants from synthetic road runoff using a combination of activated carbon and activated lignite

2014 ◽  
Vol 122 ◽  
pp. 6-11 ◽  
Author(s):  
Yang Li ◽  
Brigitte Helmreich
2016 ◽  
Vol 14 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
Areeb Shehzad ◽  
Mohammed J.K. Bashir ◽  
Sumathi Sethupathi ◽  
Jun-Wei Lim

Abstract The present work reveals the preparation and optimization of sea mango based activated carbon (SMAC) by microwave induced KOH activation for the adsorptive removal of organic and inorganic contaminants from the mature anaerobic landfill leachate using response surface methodology (RSM) technique. Chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) are the main indicators for organic and inorganic compounds often found in aged landfill leachate. Hence, the treatment of this stabilized landfill leachate is considered to be an essential step prior to its discharge. The leachate sample was collected from Sahom Landfill site in Perak, Malaysia and the initial concentrations of COD and NH3-N were measured as 550 mg/L and 3,330 mg/L, respectively. The feasibility of converting Sea mango to activated carbon process to remove the COD and NH3-N pollutants from landfill leachate was investigated. The preparation conditions such as microwave heating at power range (350–600 W), impregnation of AC with KOH (0.5–3.0) and retention time (6–10 min) were evaluated, analyzed and optimized using response surface methodology (RSM). From the analysis of variance (ANOVA), the optimum conditions for preparation of SMAC was at 560 W of activation power, 8.4 min of activation time and 2.10 of impregnation ratios with higher adsorptive removal of COD (72.50 %), and NH3-N (79.77 %), respectively. The physical and chemical properties of SMAC were evaluated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and surface area. The findings exemplified the applicability of SMAC as an effective precursor for the simultaneous removal of organic and inorganic pollutants from mature landfill leachate.


2012 ◽  
Vol 253-255 ◽  
pp. 960-964 ◽  
Author(s):  
Xiao Dan Fan ◽  
Xiang Kai Zhang

The simultaneous removal of SO2 and NO was investigated with the activated carbon from sewage sludge (referred as ACS) modified by chitosan (referred as CS).The effects of CS loading and operating conditions on the simultaneous removal of SO2 and NO were analyzed. The results indicate that compared with the ACS, impregnating CS results in significant increase in SO2 or NO removal. Relative humidity enhances SO2 adsorption capacities, but not for NO. The SO2 adsorption capacities of the CS / ACS show no obvious decrease at small amount of NO in the feed. However, higher amounts of NO reduce the SO2 adsorption capacities. The opposite phenomenon appears for NO when a small amount of SO2. So a competitive sorption consists between NO and SO2. Simultaneous adsorptions for NO and SO2 is due to more active sites from CS.


Chemosphere ◽  
2020 ◽  
Vol 253 ◽  
pp. 126580 ◽  
Author(s):  
Minhee Kim ◽  
Choe Earn Choong ◽  
Seunghun Hyun ◽  
Chang Min Park ◽  
Gooyong Lee

Sign in / Sign up

Export Citation Format

Share Document