Graphene wrapped porous tubular rutile TiO 2 nanofibers with superior interfacial contact for highly efficient photocatalytic performance for water treatment

2016 ◽  
Vol 168 ◽  
pp. 284-293 ◽  
Author(s):  
Thirugnanam Lavanya ◽  
Mrinal Dutta ◽  
Kaveri Satheesh
2020 ◽  
Vol 56 (27) ◽  
pp. 3851-3854 ◽  
Author(s):  
Xiaomin Chai ◽  
Hai-Hua Huang ◽  
Huiping Liu ◽  
Zhuofeng Ke ◽  
Wen-Wen Yong ◽  
...  

A Co-based complex displayed the highest photocatalytic performance for CO2 to CO conversion in aqueous media.


2020 ◽  
Vol 10 (6) ◽  
pp. 1609-1618 ◽  
Author(s):  
Chao Zhang ◽  
Jiandong Liu ◽  
Xingliang Liu ◽  
Shiai Xu

Reaction mechanism for the higher photocatalytic performance of H2 production of g-C3N4NSs/TC1 under visible light irradiation (λ ≥ 400 nm).


RSC Advances ◽  
2014 ◽  
Vol 4 (110) ◽  
pp. 64747-64755 ◽  
Author(s):  
Xuefeng Xu ◽  
Man Wang ◽  
Yanyan Pei ◽  
Changchun Ai ◽  
Liangjie Yuan

The micro/nano-structure composite SiO2@Ag/AgCl was employed as a low cost photocatalyst for the degradation of RhB in aqueous solution under visible light irradiation, which exhibited excellent photocatalytic performance and stability.


Nanoscale ◽  
2018 ◽  
Vol 10 (13) ◽  
pp. 5950-5964 ◽  
Author(s):  
Sulagna Patnaik ◽  
Gayatri Swain ◽  
K. M. Parida

A visible light-induced double Z-scheme charge transfer mechanism for H2 generation and Cr(vi) reduction over the Cu-MoO3/g-C3N4 composite.


2021 ◽  
Vol 21 (4) ◽  
pp. 2647-2652
Author(s):  
Yanchen Ji ◽  
Guoxin Song ◽  
Ruiqi Yang ◽  
Longhua Ding ◽  
Aizhu Wang ◽  
...  

In this work, CeO2 nanocrystal-decorated TiO2 nanobelt for forming a CeO2@TiO2 heterostructure. CeO2 plays a dual role in improving photocatalytic activity, not only by promoting the separation and transfer of photogenerated charge carriers, but also by increasing visible light absorption of the photocatalyst as a photosensitizer. The as-prepared CeO2@TiO2 heterostructure demonstrates the performance of organic degradation and H2 production (about 17 μmol/h/g, which is about 2.5 times higher than that of pure TiO2 nanobelts). Our work provides a facile and controllable synthesis method for high performance photocatalyst, which will have potential applications in synthesis clean/solar fuel, and photocatalytic water treatment.


RSC Advances ◽  
2019 ◽  
Vol 9 (13) ◽  
pp. 7338-7348 ◽  
Author(s):  
Yajun Zheng ◽  
Liyun Cao ◽  
Gaoxuan Xing ◽  
Zongquan Bai ◽  
Jianfeng Huang ◽  
...  

Flower-like MgO microparticles with excellent photocatalytic performance in degradation of various organic dyes were synthesized by a facile precipitation method via the reaction between Mg2+ and CO32− at 70 °C.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Yuanyuan Li ◽  
Xiaofang Tian ◽  
Yaoqiong Wang ◽  
Qimei Yang ◽  
Yue Diao ◽  
...  

Using solar energy to remove antibiotics from aqueous environments via photocatalysis is highly desirable. In this work, a novel type-II heterojunction photocatalyst, MgSn(OH)6/SnO2, was successfully prepared via a facile one-pot in situ hydrothermal method at 220 °C for 24 h. The obtained heterojunctions were characterized via powder X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic performance was evaluated for photodegradation of tetracycline solution under ultraviolet irradiation. The initial concentration of tetracycline solution was set to be 20 mg/L. The prepared heterojunctions exhibited superior photocatalytic activity compared with the parent MgSn(OH)6 and SnO2 compounds. Among them, the obtained MgSn(OH)6/SnO2 heterojunction with MgCl2·6H2O:SnCl4·5H2O = 4:5.2 (mmol) displayed the highest photocatalytic performance and the photodegradation efficiency conversion of 91% could be reached after 60 min under ultraviolet irradiation. The prepared heterojunction maintained its performance after four successive cycles of use. Active species trapping experiments demonstrated that holes were the dominant active species. Hydroxyl radicals and superoxide ions had minor effects on the photocatalytic oxidation of tetracycline. Photoelectrochemical measurements were used to investigate the photocatalytic mechanism. The enhancement of photocatalytic activity could be assigned to the formation of a type-II junction photocatalytic system, which was beneficial for efficient transfer and separation of photogenerated electrons and holes. This research provides an in situ growth strategy for the design of highly efficient photocatalysts for environmental restoration.


Sign in / Sign up

Export Citation Format

Share Document