Development of a new method and device for chiral drug enrichment and enantioseparation: Multiple-phase extraction and in situ coupling of crystallization

2021 ◽  
Vol 257 ◽  
pp. 117884
Author(s):  
Lelin Zeng ◽  
Qin Yi ◽  
Qian Liu ◽  
Kewen Tang ◽  
Bart Van der Bruggen
2019 ◽  
Vol 43 (24) ◽  
pp. 9458-9465
Author(s):  
Xiquan Yue ◽  
Lihong Su ◽  
Xu Chen ◽  
Junfeng Liu ◽  
Longpo Zheng ◽  
...  

The strategy is based on small molecule-mediated hybridization chain reaction.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 371
Author(s):  
Phuong-Y Mai ◽  
Géraldine Le Goff ◽  
Erwan Poupon ◽  
Philippe Lopes ◽  
Xavier Moppert ◽  
...  

Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure developed to physically separate in-situ, during the cultivation, the mycelium of filament forming microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds, and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process. SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of this strain was investigated effectively using a dereplication strategy based on molecular networking and in-depth chemical analysis. The results highlight the impact of culture support on the molecular profile of Streptomyces albidoflavus 19-S21 secondary metabolites.


2014 ◽  
Vol 53 (11) ◽  
pp. 4147-4155 ◽  
Author(s):  
Anna Bacciarelli-Ulacha ◽  
Edward Rybicki ◽  
Edyta Matyjas-Zgondek ◽  
Aleksandra Pawlaczyk ◽  
Malgorzata I. Szynkowska

2007 ◽  
Vol 270 (2) ◽  
pp. 103-104
Author(s):  
C.J. Tay ◽  
C. Quan ◽  
F.J. Yang ◽  
X.Y. He

2019 ◽  
Vol 41 (6) ◽  
pp. 1039-1039
Author(s):  
Yingguo Fang and Jie Yan Yingguo Fang and Jie Yan

A novel and efficient alkoxylselenenylation from alkenes, diselenides, and alcohols mediated by iodine is developed, with which a series of β-alkoxy selenides are synthesized. In this procedure, firstly, I2 reacts with diselenide to form in situ the active electrophilic selenium species RSeI, then following an electrophilic addition of it to alkenes provides β-alkoxy selenides with high regioselectivity and in good yields. This new method for achieving β-alkoxy selenides has some advantages over other methods such as using available and cheap iodine as the oxidizing species at room temperature, which makes this reaction has milder reaction conditions and simpler procedure.


Sign in / Sign up

Export Citation Format

Share Document