scholarly journals Reactive extraction of lactic acid from sweet sorghum silage press juice

Author(s):  
Paul Demmelmayer ◽  
Marlene Kienberger
2019 ◽  
Vol 9 (6) ◽  
pp. 1247 ◽  
Author(s):  
Hager Alhaag ◽  
Xianjun Yuan ◽  
Azizza Mala ◽  
Junfeng Bai ◽  
Tao Shao

This study aims to evaluate the fermentation characteristics of Lactobacillus plantarum and Pediococcus spp isolated from sweet sorghum silage to enhance the fermentation quality of Napier grass and sweet sorghum silage. Based on molecular 16S ribosomal ribonucleic identification the isolated strains were phylogenetically related to Lactobacillus plantarum (HY1), Pediococcus acidilactici (HY2) and Pediococcus claussenii (HY3). Strains HY1, HY2 and HY3 and commercial bacteria Lactobacillus plantarum, Ecosyl; (MTD\1( were ensiled with sweet sorghum and Napier grass and the non-inoculated grasses, have been arranged in a completely randomized experimental design in a 5 (inoculants) × 3 (ensiling periods). In both grasses, the fermentation characteristics chemical composition and microbial population were assessed at 5–30 and 90 days of ensiling. The results showed that the effect of addition inoculants significantly reduced (p < 0.05) the pH, ammonia-N, acetic acid and undesirable microbial population and increased (p < 0.05) lactic acid and lactic acid bacteria counting when compared to the control. The effect of ensiling days on silage quality through the increasing lactic acid, acetic acid, ammonia-N, propionic acid and butyric acid whereas decreasing pH and water-soluble carbohydrates and microbial counts. In both sweet sorghum and Napier silage treated with isolated strains showed the best results in silage quality. The HY3 belongs to Pediococcus claussenii was not extensively studied in silage but it has shown good fermentation quality which strongly recommended to apply as probiotic.


2004 ◽  
Vol 43 (19) ◽  
pp. 5969-5982 ◽  
Author(s):  
Kailas L. Wasewar ◽  
Archis A. Yawalkar ◽  
Jacob A. Moulijn ◽  
Vishwas G. Pangarkar

RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 35771-35777 ◽  
Author(s):  
Y. Wang ◽  
M. Wang ◽  
D. Cai ◽  
B. Wang ◽  
Z. Wang ◽  
...  

An open SSF process using B. coagulans LA1507 introduces an effective way to produce l-lactic acid from abundant SSB.


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 36 ◽  
Author(s):  
Agata Olszewska-Widdrat ◽  
Maria Alexandri ◽  
José Pablo López-Gómez ◽  
Roland Schneider ◽  
Michael Mandl ◽  
...  

Sweet sorghum juice (SSJ) was evaluated as fermentation substrate for the production of l-lactic acid. A thermophilic Bacillus coagulans isolate was selected for batch fermentations without the use of additional nutrients. The first batch of SSJ (Batch A) resulted on higher lactic acid concentration, yield and productivity with values of 78.75 g∙L−1, 0.78 g∙g−1 and 1.77 g∙L−1 h−1, respectively. Similar results were obtained when the process was transferred into the pilot scale (50 L), with corresponding values of 73 g∙L−1, 0.70 g∙g−1 and 1.47 g∙L−1 h−1. A complete downstream process scheme was developed in order to separate lactic acid from the fermentation components. Coarse and ultra-filtration were employed as preliminary separation steps. Mono- and bipolar electrodialysis, followed by chromatography and vacuum evaporation were subsequently carried out leading to a solution containing 905.8 g∙L−1 lactic acid, with an optical purity of 98.9%. The results of this study highlight the importance of the downstream process with respect to using SSJ for lactic acid production. The proposed downstream process constitutes a more environmentally benign approach to conventional precipitation methods.


2019 ◽  
Vol 3 (2) ◽  
pp. 43 ◽  
Author(s):  
Nuttakul Mungma ◽  
Marlene Kienberger ◽  
Matthäus Siebenhofer

The present work develops the basics for the isolation of lactic acid, acetic acid and formic acid from a single as well as a mixed feed stream, as is present, for example, in fermentation broth for lactic acid production. Modelling of the phase equilibria data is performed using the law of mass action and shows that the acids are extracted according to their pka value, where formic acid is preferably extracted in comparison to lactic and acetic acid. Back-extraction was performed by 1 M NaHCO3 solution and shows the same tendency regarding the pka value. Based on lactic acid, the solvent phase composition, consisting of tri-n-octylamine/1-octanol/n-undecane, was optimized in terms of the distribution coefficient. The data clearly indicate that, compared to physical extraction, mass transfer can be massively enhanced by reactive extraction. With increasing tri-n-octylamine and 1-octanol concentration, the equilibrium constant increases. However, even when mass transfer increases, tri-n-octylamine concentrations above 40 wt%, lead to third phase formation, which needs to be prevented for technical application. The presented data are the basis for the transfer to liquid membrane permeation, which enables the handling of emulsion tending systems.


Sign in / Sign up

Export Citation Format

Share Document