Comparative energy, exergy and economic analysis of a cascade refrigeration system incorporated with flash tank (HTC) and a flash intercooler with indirect subcooler (LTC) using natural refrigerant couples

2020 ◽  
Vol 39 ◽  
pp. 100716 ◽  
Author(s):  
Kaushalendra Kumar Singh ◽  
Rajesh Kumar ◽  
Anjana Gupta
2021 ◽  
Vol 20 (2) ◽  
pp. 20
Author(s):  
V. B. Rangel ◽  
A. G. S. Almeida

Cascade refrigeration systems work with two or more serial disposed cycles and can obtain internal temperatures below -60°C, which is necessary for several activities in medicine and scientific research. This paper presents a thermodynamic analysis of cascade system refrigeration using natural refrigerant fluids for ultra-low temperatures. These fluids are environmentally friendly refrigerant and are an alternative to hydro chlorofluorocarbons (HCFCs) and to hydrofluorocarbons (HFCs). Energy and exergy analyses were performed using a thermodynamic model based on the law of conservation of mass and also on the first and second laws of thermodynamics. A simulator was developed to assess the technical practicability of this system, considering it running as a real refrigeration cycle. Natural fluids have best performance energetically and environmentally.


2013 ◽  
Vol 388 ◽  
pp. 96-100
Author(s):  
Nasruddin ◽  
M. Idrus Alhamid ◽  
Darwin R.B. Syaka ◽  
Arnas

Medicine and biomedical research activities require cold storage to store biomedical specimens such as, for example, stem cell, sperm, blood and other organs. During storage, to prevent the specimen from damage required a special cold storage reaches -80°C [1]. Using single cycle refrigeration machine can only reach -40°C, and performance deteriorates below -35°C drop in pressure associated with evaporation. Thus, to reach lower temperatures, use cascade refrigeration machine [2]. During this low-temperature circuit cascade refrigeration systems still use refrigerants that contain ozone-depleting or global warming (CFCs and HCFCs). To overcome this, a mixture of carbon dioxide and ethane azeotropic a promising alternative refrigerants. Simulation studies and experiments indicate a mixture of carbon dioxide and ethane were able to achieve the minimum temperature to -80°C [4-7]. With the mass ratio 70% R170 and 30% R744 circuit at low temperature refrigeration systems and uses a capillary tube expansion device 0.054 inch diameter with a length of 6 meters and 3 meters then use an electric heater as the cooling load. Cooling load is given by the variation of 90 W, 120 W and 150 W at a cabin in the low temperature circuit. From the experiment will be known characteristics of cascade refrigeration system with refrigerant mixture and will get the parameter data to make cascade refrigeration machine.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2254
Author(s):  
Mingzhang Pan ◽  
Huan Zhao ◽  
Dongwu Liang ◽  
Yan Zhu ◽  
Youcai Liang ◽  
...  

This paper provides a literature review of the cascade refrigeration system (CRS). It is an important system that can achieve an evaporating temperature as low as −170 °C and broadens the refrigeration temperature range of conventional systems. In this paper, several research options such as various designs of CRS, studies on refrigerants, and optimization works on the systems are discussed. Moreover, the influence of parameters on system performance, the economic analysis, and applications are defined, followed by conclusions and suggestions for future studies.


2015 ◽  
Vol 75 ◽  
pp. 504-512 ◽  
Author(s):  
Yingjie Xu ◽  
FuSheng Chen ◽  
Qin Wang ◽  
Xiaohong Han ◽  
Dahong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document