natural refrigerant
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
I. Bellanco ◽  
F. Belío ◽  
M. Vallés ◽  
R. Gerber ◽  
J. Salom

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6926
Author(s):  
Ángel Á. Pardiñas ◽  
Michael Jokiel ◽  
Christian Schlemminger ◽  
Håkon Selvnes ◽  
Armin Hafner

An integrated energy system that consists of a centralized refrigeration unit can deliver the entire HVAC&R (heating, ventilation, air conditioning, and refrigeration) demand for a supermarket. CO2 (R744) is a natural refrigerant that is becoming increasingly popular for these centralized units due to significant energy and cost savings, while also being sustainable, safe, and non-toxic. This study focuses on the fully integrated CO2 refrigeration system configuration for a supermarket in Porto de Mos, Portugal, which was equipped and fully monitored through the EU-funded project MultiPACK. A dynamic system model was developed in Modelica and validated against measurement data from the site recorded for one week. The model is used to provide additional ejector performance data supporting the obtained measurement data and to evaluate the system configuration at equivalent boundary conditions. The simulation results show that the installation of a vapor ejector (high-pressure lift) is sufficient to improve the efficiency of the unit compared to an ejector-less (high-pressure valve) system. However, more notable enhancements are achieved by including additional flooded evaporation with liquid ejectors and smart regulation of the receiver pressure, adding up to a global efficiency increase of 15% if compared to the high-pressure valve system during the validation week.


2021 ◽  
Vol 26 (3) ◽  
pp. 119-130
Author(s):  
R.A. Mahmood ◽  
O.M. Ali ◽  
A. Al-Janabi ◽  
G. Al-Doori ◽  
M.M. Noor

Abstract Reducing energy consumption and providing high performance for a vapour compression refrigeration system are big challenges that need more attention and investigation. This paper provides an extensive review of experimental and theoretical studies to present the vapour compression refrigeration system and its modifications that can be used to improve system’s performance and reduce its energy consumption. This paper also presents the challenges that can be considered as a gab of research for the future works and investigations. Cooling capacity, refrigerant effect, energy consumption can be improved by using vapour injection technique, natural working fluid, and heat exchanger. Based on the outcome of this paper, vapour injection technique using natural refrigerant such as water can provide ultimate friendly refrigeration system. Future vision for the vapour compression refrigeration system and its new design technique using Computational Fluid Dynamic (CFD) is also considered and presented.


2021 ◽  
Vol 20 (2) ◽  
pp. 20
Author(s):  
V. B. Rangel ◽  
A. G. S. Almeida

Cascade refrigeration systems work with two or more serial disposed cycles and can obtain internal temperatures below -60°C, which is necessary for several activities in medicine and scientific research. This paper presents a thermodynamic analysis of cascade system refrigeration using natural refrigerant fluids for ultra-low temperatures. These fluids are environmentally friendly refrigerant and are an alternative to hydro chlorofluorocarbons (HCFCs) and to hydrofluorocarbons (HFCs). Energy and exergy analyses were performed using a thermodynamic model based on the law of conservation of mass and also on the first and second laws of thermodynamics. A simulator was developed to assess the technical practicability of this system, considering it running as a real refrigeration cycle. Natural fluids have best performance energetically and environmentally.


2021 ◽  
Vol 1059 (1) ◽  
pp. 012040
Author(s):  
Mohammed Hameeduddin Haqqani ◽  
Mohammed Azizuddin ◽  
Syed Shuibul Qarnain ◽  
S. Bathrinath
Keyword(s):  

Evergreen ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 544-548
Author(s):  
A.S. Pamitran ◽  
S. Novianto ◽  
N. Mohd-Ghazali ◽  
R.A Koestoer

2020 ◽  
Vol 24 (4) ◽  
pp. 239-247
Author(s):  
Akhmad Syihan Santoso ◽  
Agus Sunjarianto Pamitran ◽  
Sentot Novianto ◽  
Muhammad Reza Fahlevi

Author(s):  
R S Anand ◽  
C P Jawahar ◽  
A Brusly Solomon ◽  
Varghese Benson ◽  
Ashie Alan K ◽  
...  

Thermosyphon is used in numerous applications such as permafrost, cooling building and structures, Alaska pipeline, electronic cooling, and other applications. Improving the performance of thermosyphon is essential for technology advancement. Therefore, experimentation is conducted to improve the efficiency of thermosyphon with the natural refrigerant hydrofluoroether (HFE) and Al2O3/HFE7000 nanorefrigerant. The Al2O3 nanoparticle is chosen based on its economic feasibility and better thermo-physical properties with the refrigerants. Firstly, the preparation of Al2O3/HFE7000 nanorefrigerant is carried out specifically at different volume concentrations of the nanoparticle to check the long-term stability. Secondly, the heat transfer characteristics of the thermosyphon charged Al2O3/HFE7000 nanorefrigerant of 0.025%, 0.05%, and 0.075% volume concentration and pure HFE7000 is investigated experimentally. The nanorefrigerant charged thermosyphon experimented for different inclinations and different volume concentrations as the working fluid. It was observed that the two-phase closed thermosyphon charged with Al2O3/HFE7000 nanorefrigerant enhanced its evaporator heat transfer performance also decreased the thermal resistance of 57.5% compared with the pure HFE7000 and was at its peak for 0.05% volume concentration. The heat transfer of nanorefrigerant Al2O3/HFE7000 0.025%, 0.05%, and 0.075% volume concentration is increases 41.61%, 88.414%, and 74.362% than HFE7000. In conclusion, the results of the experiments suggest that the use of Al2O3/HFE7000 nanofluid produce a significant thermal enhancement in thermosyphon. This research also discloses the effect of dimensionless parameters such as the Bond number of the boiling phenomenon, Prandtl and condensation number of conduction phenomenon, and Ohensorge number of buoyancy phenomenon in thermosyphon with Al2O3/HFE7000 nanorefrigerant. It is identified that the volume concentration of 0.05% Al2O3/HFE7000 has a considerable effect on nondimensional parameters.


Sign in / Sign up

Export Citation Format

Share Document