scholarly journals Technical, economic and environmental analyses of combined heat and power (CHP) system with hybrid prime mover and optimization using genetic algorithm

2022 ◽  
Vol 49 ◽  
pp. 101697
Author(s):  
Mahmood Mehregan ◽  
Mohammad Abbasi ◽  
Seyed Majid Hashemian
Author(s):  
Mehdi Aghaei Meybodi ◽  
Masud Behnia

Microturbines are ideally suited for distributed generation applications due to their flexibility in connection methods. They can be stacked in parallel for larger loads and provide stable and reliable power generation. One of the main applications of microturbines is operating as the prime mover in a combined heat and power (CHP) system. CHP systems are considered to be one of the best ways to produce heat and power with efficient fossil fuel consumption. Further, these systems emit less pollution compared to separate productions of the same amount of electricity and heat. In order to optimally benefit from combined heat and power systems, the proper sizing of prime movers is of paramount importance. This paper presents a technical-economic method for selecting the optimum number and nominal power as well as planning the operational strategy of microturbines as the prime movers of small scale combined heat and power systems (capacities up to 500 kW) in three modes of operation: one-way connection (OWC) mode, two-way connection (TWC) mode, and heat demand following (HDF) mode. In the proposed sizing procedure both performance characteristics of the prime mover and economic parameters (i.e. capital and maintenance costs) are taken into account. As the criterion for decision making Net Present Worth (NPW) is used. In our analysis we have also considered the impact of carbon tax on the economics of generation. The proposed approach may also be used for other types of prime movers as well as other sizes of CHP system.


Author(s):  
Mehdi Aghaei Meybodi ◽  
Masud Behnia

Optimum selection of prime movers in combined heat and power (CHP) systems is of crucial importance due to the fact that inappropriate choices reduce the benefits of CHP systems considerably. In the selection procedure, the performance characteristics of prime movers as well as economic parameters should be taken into account. In this paper, a thermo-economic method for selecting the optimum nominal power and planning the operational strategy of gas turbine as the prime mover of a medium scale (500–5000 kW) CHP system is presented. Appropriate relations for estimating thermodynamic and economic parameters of the system in the context of net annual cost criterion are introduced. Three modes of operation have been considered, namely, two-way connection (TWC) mode, one-way connection (OWC) mode, and heat demand following (HDF) mode. In TWC mode, buying electricity from the grid and selling the excess electricity to the grid are allowed. OWC mode is a situation in which it is only possible to buy electricity from the grid. In HDF mode, buying electricity from the grid and selling electricity to the grid are allowed. HDF mode of operation is considered to have the minimum waste of energy due to the fact that prime movers work in a condition at which the excess produced heat is minimal. As a way of dealing with the environmental concerns, the impact of carbon tax has also been studied. The proposed method has been used for a case study. It was observed that the optimum nominal powers in TWC mode, OWC mode, and HDF mode are 3.5 MW, 3.4 MW, and 0.8 MW, respectively. Furthermore, in order to determine the sensitivity of results to parameters such as cost of electricity, cost of fuel, and carbon tax, a comprehensive sensitivity analysis was conducted. It is noted that the proposed method may be used for other types of prime movers (such as internal combustion engines) as well as various sizes of combined heat and power systems.


Author(s):  
Sepehr Sanaye ◽  
Mehdi Aghaee Meibodi ◽  
Shahabeddin Shokrollahi ◽  
Habibollah Fouladi

Combined Heat and Power (CHP) systems have many economical and environmental benefits. Generally, selection of these systems is performed using the time-dependent curves of the required electricity and heating load during a year. In the selection of a CHP system, the operation of this system at off-design point also should be studied. In this paper, a method for selecting the number of prime movers, and determining their nominal power and operational strategy considering specific electrical and heating loads is presented. Three types of prime movers which are studied in this paper are gas turbine, diesel engine, and gas engine. Selecting the number of each type of prime mover and determining their nominal power as well as the operational strategy are presented here. Ambient conditions and electricity and heating load curves are assumed as known parameters. Parameters such as engine thermal efficiency, exhaust gas temperature, mass flow rate of fuel and exhaust gases are computed for three types of prime movers. After determining the optimum value of number and nominal power of prime mover(s), the operational strategy of each type of prime mover in CHP system is analyzed.


Author(s):  
Chad Wheeley ◽  
Pedro J. Mago

This paper considers combined heat and power (CHP) systems based on topping cycles only, in which electricity is generated by a prime mover and heat is then recovered from the exhaust and utilized to offset all or a portion of the facility’s process and/or space heating requirements.. The objective of this paper is to develop a methodology to perform a topping cycle CHP assessment and feasibility study for industrial manufacturing facilities. In order to determine the best and most viable option for the facility in question, the proposed methodology can be used to size different systems which utilize diverse technologies and fuel sources, perform an economic analysis of each proposed option, and then compare the benefits and setbacks of each type of CHP system considered. The calculations performed in the economic analysis will then provide a broad insight as to which proposed system will show the best payback if installed. Examples are presented in this paper that describe in detail the application of this methodology, from equipment selection and sizing through economic analyses and proposed system comparisons, which is recommended for use in order to determine the most economically feasible CHP system for an industrial manufacturing facility.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
Miguel Calvário ◽  
C. Guedes Soares

Abstract This paper presents the adaptation of a torus wave energy converter prime mover to an onshore or nearshore fixed platform, by a hinged arm. An optimization code is developed to obtain the best torus and arm geometry, as well as the power take-off parameters, taking as objective function the maximization of total wave absorbed power. In this paper, the power take-off system is modelled as a simplified damper and spring system, where the parameters are optimized for the phase control of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. Finally, the optimal result for the productive sea state indicates that the absorbed power is relatively considerable while a better survivability performance is expected from a torus wave energy converter compared to a conventional truncated prime mover.


2014 ◽  
Vol 472 ◽  
pp. 1052-1056
Author(s):  
Chun Hui Liao ◽  
Zhi Gang Zhou ◽  
Jia Ning Zhao

For evaluating the performance of combined heat and power district heating (CHP-DH) system, some thermodynamic indicators of CHP system, include energy efficiency, exergy efficiency, RPES and RAI, are introduced in this paper. Based on two condensed and heating dual purpose plants, the values of these indicators are calculated with different extraction ratio. The results show that RAI and RPES are more reasonable to be used to assess CHP-DH system and there is a minimum extraction ratio for each unit, which is 0.4 for given plants in this paper, to keep CHP-DH beneficial compared with separate heat and power (SHP) system. Besides, the minimum heat demand of CHP-DH system should be larger than the supplied heat correspond to minimum extraction ratio.


2019 ◽  
Vol 111 ◽  
pp. 06010
Author(s):  
Ruoyu Zhang ◽  
Haichao Wang ◽  
Xiaozhou Wu ◽  
Xiangli Li ◽  
Lin Duanmu

The thermal energy storage (TES) technology is an effective method to enhance the planning and the economy of the combined heat and power (CHP) plants, while it has still not been broadly promoted in China. In this paper we firstly establish a mathematical model for a Chinese CHP plant with TES. Then the EnergyPRO software is used to find the optimum type of the TES tank in a three-tariff electricity pricing market and the operation strategy of the CHP plant with the selected TES tank is studied. Thirdly, the economic benefits of the system with/without TES is evaluated. The results show that adding a TES tank with volume of 24000m3 can significantly increase operational profits of the CHP system and reduce the use of peak-shaving heat source.


Author(s):  
Michael K. Sahm ◽  
Jifeng Zhang ◽  
Timothy Wagner ◽  
Sunghan Jung

System level integration of an electrical power generating prime mover with a waste heat recovery thermally activated cooling technology is analyzed. Component and system level metrics for quantifying efficiency, performance and value are defined. Trades between component level metrics and system level metrics are performed and optimal integrated cooling, heating and power configuration characteristics and value sensitivity to integration parameters are quantified. Methods developed are extensible to other integrated prime mover and thermally activated technology system approaches.


Sign in / Sign up

Export Citation Format

Share Document