New understanding of power generation structure transformation, based on a machine learning predictive model

2022 ◽  
Vol 51 ◽  
pp. 101962
Author(s):  
Boqiang Lin ◽  
Lei Shi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Boeckaerts ◽  
Michiel Stock ◽  
Bjorn Criel ◽  
Hans Gerstmans ◽  
Bernard De Baets ◽  
...  

AbstractNowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


2019 ◽  
Vol 13 (7) ◽  
pp. 1009-1023 ◽  
Author(s):  
Muhammad Naveed Akhter ◽  
Saad Mekhilef ◽  
Hazlie Mokhlis ◽  
Noraisyah Mohamed Shah

2021 ◽  
pp. 219256822110193
Author(s):  
Kevin Y. Wang ◽  
Ijezie Ikwuezunma ◽  
Varun Puvanesarajah ◽  
Jacob Babu ◽  
Adam Margalit ◽  
...  

Study Design: Retrospective review. Objective: To use predictive modeling and machine learning to identify patients at risk for venous thromboembolism (VTE) following posterior lumbar fusion (PLF) for degenerative spinal pathology. Methods: Patients undergoing single-level PLF in the inpatient setting were identified in the National Surgical Quality Improvement Program database. Our outcome measure of VTE included all patients who experienced a pulmonary embolism and/or deep venous thrombosis within 30-days of surgery. Two different methodologies were used to identify VTE risk: 1) a novel predictive model derived from multivariable logistic regression of significant risk factors, and 2) a tree-based extreme gradient boosting (XGBoost) algorithm using preoperative variables. The methods were compared against legacy risk-stratification measures: ASA and Charlson Comorbidity Index (CCI) using area-under-the-curve (AUC) statistic. Results: 13, 500 patients who underwent single-level PLF met the study criteria. Of these, 0.95% had a VTE within 30-days of surgery. The 5 clinical variables found to be significant in the multivariable predictive model were: age > 65, obesity grade II or above, coronary artery disease, functional status, and prolonged operative time. The predictive model exhibited an AUC of 0.716, which was significantly higher than the AUCs of ASA and CCI (all, P < 0.001), and comparable to that of the XGBoost algorithm ( P > 0.05). Conclusion: Predictive analytics and machine learning can be leveraged to aid in identification of patients at risk of VTE following PLF. Surgeons and perioperative teams may find these tools useful to augment clinical decision making risk stratification tool.


2020 ◽  
Vol 16 (4) ◽  
pp. 2315-2324 ◽  
Author(s):  
Chathura Wanigasekara ◽  
Ebrahim Oromiehie ◽  
Akshya Swain ◽  
B. Gangadhara Prusty ◽  
Sing Kiong Nguang

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J A Ortiz ◽  
R Morales ◽  
B Lledo ◽  
E Garcia-Hernandez ◽  
A Cascales ◽  
...  

Abstract Study question Is it possible to predict the likelihood of an IVF embryo being aneuploid and/or mosaic using a machine learning algorithm? Summary answer There are paternal, maternal, embryonic and IVF-cycle factors that are associated with embryonic chromosomal status that can be used as predictors in machine learning models. What is known already The factors associated with embryonic aneuploidy have been extensively studied. Mostly maternal age and to a lesser extent male factor and ovarian stimulation have been related to the occurrence of chromosomal alterations in the embryo. On the other hand, the main factors that may increase the incidence of embryo mosaicism have not yet been established. The models obtained using classical statistical methods to predict embryonic aneuploidy and mosaicism are not of high reliability. As an alternative to traditional methods, different machine and deep learning algorithms are being used to generate predictive models in different areas of medicine, including human reproduction. Study design, size, duration The study design is observational and retrospective. A total of 4654 embryos from 1558 PGT-A cycles were included (January-2017 to December-2020). The trophoectoderm biopsies on D5, D6 or D7 blastocysts were analysed by NGS. Embryos with ≤25% aneuploid cells were considered euploid, between 25-50% were classified as mosaic and aneuploid with &gt;50%. The variables of the PGT-A were recorded in a database from which predictive models of embryonic aneuploidy and mosaicism were developed. Participants/materials, setting, methods The main indications for PGT-A were advanced maternal age, abnormal sperm FISH and recurrent miscarriage or implantation failure. Embryo analysis were performed using Veriseq-NGS (Illumina). The software used to carry out all the analysis was R (RStudio). The library used to implement the different algorithms was caret. In the machine learning models, 22 predictor variables were introduced, which can be classified into 4 categories: maternal, paternal, embryonic and those specific to the IVF cycle. Main results and the role of chance The different couple, embryo and stimulation cycle variables were recorded in a database (22 predictor variables). Two different predictive models were performed, one for aneuploidy and the other for mosaicism. The predictor variable was of multi-class type since it included the segmental and whole chromosome alteration categories. The dataframe were first preprocessed and the different classes to be predicted were balanced. A 80% of the data were used for training the model and 20% were reserved for further testing. The classification algorithms applied include multinomial regression, neural networks, support vector machines, neighborhood-based methods, classification trees, gradient boosting, ensemble methods, Bayesian and discriminant analysis-based methods. The algorithms were optimized by minimizing the Log_Loss that measures accuracy but penalizing misclassifications. The best predictive models were achieved with the XG-Boost and random forest algorithms. The AUC of the predictive model for aneuploidy was 80.8% (Log_Loss 1.028) and for mosaicism 84.1% (Log_Loss: 0.929). The best predictor variables of the models were maternal age, embryo quality, day of biopsy and whether or not the couple had a history of pregnancies with chromosomopathies. The male factor only played a relevant role in the mosaicism model but not in the aneuploidy model. Limitations, reasons for caution Although the predictive models obtained can be very useful to know the probabilities of achieving euploid embryos in an IVF cycle, increasing the sample size and including additional variables could improve the models and thus increase their predictive capacity. Wider implications of the findings Machine learning can be a very useful tool in reproductive medicine since it can allow the determination of factors associated with embryonic aneuploidies and mosaicism in order to establish a predictive model for both. To identify couples at risk of embryo aneuploidy/mosaicism could benefit them of the use of PGT-A. Trial registration number Not Applicable


2021 ◽  
Vol 39 (28_suppl) ◽  
pp. 330-330
Author(s):  
Teja Ganta ◽  
Stephanie Lehrman ◽  
Rachel Pappalardo ◽  
Madalene Crow ◽  
Meagan Will ◽  
...  

330 Background: Machine learning models are well-positioned to transform cancer care delivery by providing oncologists with more accurate or accessible information to augment clinical decisions. Many machine learning projects, however, focus on model accuracy without considering the impact of using the model in real-world settings and rarely carry forward to clinical implementation. We present a human-centered systems engineering approach to address clinical problems with workflow interventions utilizing machine learning algorithms. Methods: We aimed to develop a mortality predictive tool, using a Random Forest algorithm, to identify oncology patients at high risk of death within 30 days to move advance care planning (ACP) discussions earlier in the illness trajectory. First, a project sponsor defined the clinical need and requirements of an intervention. The data scientists developed the predictive algorithm using data available in the electronic health record (EHR). A multidisciplinary workgroup was assembled including oncology physicians, advanced practice providers, nurses, social workers, chaplain, clinical informaticists, and data scientists. Meeting bi-monthly, the group utilized human-centered design (HCD) methods to understand clinical workflows and identify points of intervention. The workgroup completed a workflow redesign workshop, a 90-minute facilitated group discussion, to integrate the model in a future state workflow. An EHR (Epic) analyst built the user interface to support the intervention per the group’s requirements. The workflow was piloted in thoracic oncology and bone marrow transplant with plans to scale to other cancer clinics. Results: Our predictive model performance on test data was acceptable (sensitivity 75%, specificity 75%, F-1 score 0.71, AUC 0.82). The workgroup identified a “quality of life coordinator” who: reviews an EHR report of patients scheduled in the upcoming 7 days who have a high risk of 30-day mortality; works with the oncology team to determine ACP clinical appropriateness; documents the need for ACP; identifies potential referrals to supportive oncology, social work, or chaplain; and coordinates the oncology appointment. The oncologist receives a reminder on the day of the patient’s scheduled visit. Conclusions: This workgroup is a viable approach that can be replicated at institutions to address clinical needs and realize the full potential of machine learning models in healthcare. The next steps for this project are to address end-user feedback from the pilot, expand the intervention to other cancer disease groups, and track clinical metrics.


Sign in / Sign up

Export Citation Format

Share Document