Electrical method to measure the dynamic behaviour and the quadrature error of a MEMS gyroscope sensor

2007 ◽  
Vol 134 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Alfredo Cigada ◽  
Elisabetta Leo ◽  
Marcello Vanali
Author(s):  
Alfredo Cigada ◽  
Elisabetta Leo ◽  
Marcello Vanali

A full characterization of the mechanical parameters for vibrating MEMS sensors is required before integrating the mechanical and the electronic part. This is to verify that the main design specifications are fulfilled before sensors are available on the market. The main goal is to accurately establish the well-working devices in the shortest time. In this paper the electrical method based on the measurement of the GND current is used to satisfy this purpose. To check the validity of the achieved results through this method a comparison is done with those obtained through the widely used optical method based on vibration measurements through by means of a Laser Doppler Vibrometer (LDV).


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000359-000366 ◽  
Author(s):  
Patrick McCluskey ◽  
Chandradip Patel ◽  
David Lemus

Elevated temperatures can significantly affect the performance and reliability of MEMS gyroscope sensors. A MEMS vibrating resonant gyroscope measures angular velocity via a displacement measurement which can be on the order on nanometers. High sensitivity to small changes in displacement causes the MEMS Gyroscope sensor to be strongly affected by changes in temperature which can affect the displacement of the sensor due to thermal expansion and thermomechanical stresses. Analyzing the effect of temperature on MEMS gyroscope sensor measurements is essential in mission critical high temperature applications, such as inertial tracking of the movement of a fire fighter in a smoke filled indoor environment where GPS tracking is not possible. In this paper, we will discuss the development of the high temperature package for the tracking application, including the characterization of the temperature effects on the performance of a MEMS gyroscope. Both stationary and rotary tests were performed at room and at elevated temperatures on 10 individual single axis MEMS gyroscope sensors.


2011 ◽  
Vol 44 (1) ◽  
pp. 3551-3556 ◽  
Author(s):  
Juntao Fei ◽  
Weili Dai ◽  
Mingang Hua ◽  
Yuncan Xue

Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1115
Author(s):  
Rui Feng ◽  
Jiong Wang ◽  
Wei Qiao ◽  
Fu Wang ◽  
Ming Zhou ◽  
...  

In high-reliability applications, the health condition of the MEMS gyroscope needs to be known in real time to ensure that the system does not fail due to the wrong output signal. Because the MEMS gyroscope self-test based on the principle of electrostatic force cannot be performed during the working state. We propose that by monitoring the quadrature error signal of the MEMS gyroscope in real time, an online self-test of the MEMS gyroscope can be realized. The correlation between the gyroscope’s quadrature error amplitude signal and the gyroscope scale factor and bias was theoretically analyzed. Based on the sixteen-sided cobweb-like MEMS gyroscope, the real-time built-in self-test (BIST) method of the MEMS gyroscope based on the quadrature error signal was verified. By artificially setting the control signal of the gyroscope to zero, we imitated several scenarios where the gyroscope malfunctioned. Moreover, a mechanical impact table was used to impact the gyroscope. After a 6000 g shock, the gyroscope scale factor, bias, and quadrature error amplitude changed by −1.02%, −5.76%, and −3.74%, respectively, compared to before the impact. The gyroscope failed after a 10,000 g impact, and the quadrature error amplitude changed −99.82% compared to before the impact. The experimental results show that, when the amplitude of the quadrature error signal seriously deviates from the original value, it can be determined that the gyroscope output signal is invalid.


Author(s):  
Tianfu Wang ◽  
Samuel F. Asokanthan

Instabilities in a vibratory MEMS gyroscope that is subject to stochastic fluctuations in input angular rates are investigated. The vibratory-type gyroscope considered in the present study is of the spring-mass type. For the purpose of acquiring stability conditions, when the angular rate input is subject to small intensity stochastic fluctuations, dynamic behaviour of stochastically perturbed linear gyroscopic systems is studied in detail. An asymptotic approach based on the method of stochastic averaging has been employed for this purpose, and closed-form conditions for mean square stability of dynamic response are obtained for the case of exponentially correlated noise. Results are shown to depend only on those values of the excitation spectral density near twice the natural frequencies and the combination frequencies of the system. The presented results remain valid if the stochastic parametric excitation has a small correlation time compared with the system relaxation time. Stability predictions have been illustrated via stability diagrams in the power-spectral–density-damping-ratio space. Further, to illustrate the applicability of the results in practice, conditions for varying input angular rates are mapped. Although, the above conditions are predicted for the spring-mass type gyroscope, the predictions can be easily translated to other vibratory gyroscope designs.


Sign in / Sign up

Export Citation Format

Share Document