Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors

2004 ◽  
Vol 100 (1-2) ◽  
pp. 117-125 ◽  
Author(s):  
Federica Valentini ◽  
Silvia Orlanducci ◽  
Maria Letizia Terranova ◽  
Aziz Amine ◽  
Giuseppe Palleschi
Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 199
Author(s):  
Anna Wcisło ◽  
Izabela Małuch ◽  
Paweł Niedziałkowski ◽  
Tadeusz Ossowski ◽  
Adam Prahl

Efficient deposition of biomolecules on the surface, maintaining their full activity and stability, is a most significant factor in biosensor construction. For this reason, more and more research is focused on the development of electrochemical biosensors that have the ability to electrically detect adsorbed molecules on electrode surface with high selectivity and sensitivity. The presented research aims to develop an efficient methodology that allows quantification of processes related to the evaluation of enzyme activity (proprotein convertase) using electrochemical methods. In this study we used impedance spectroscopy to investigate the immobilization of peptide substrate (Arg-Val-Arg-Arg) modified with 11-mercaptoundecanoic acid on the surface of gold electrode. Both the synthesis of the peptide substrate as well as the full electrochemical characteristics of the obtained electrode materials have been described. Experimental conditions, including concentration of peptide substrate immobilization, modification time, linker, and the presence of additional blocking groups have been optimized. The main advantages of the described method is that it makes it possible to observe the peptide substrate–enzyme interaction without the need to use fluorescent labels. This also allows observation of this interaction at a very low concentration. Both of these factors make this new technique competitive with the standard spectrofluorimetric method.


2021 ◽  
Author(s):  
Mingjie Li ◽  
Xuan Zheng ◽  
Xiang Li ◽  
Youjun Yu ◽  
Jinlong Jiang

Recently, transition metal selenides have been investigated extensively as promising electrode materials for high-performance supercapacitors. Herein, the multi-component CoSe2/CNTs@g-C3N4 composites are prepared using a two-step hydrothermal method by incorporating one-dimensional...


2015 ◽  
Vol 17 (2) ◽  
pp. 776-780 ◽  
Author(s):  
Barun Kumar Barman ◽  
Karuna Kar Nanda

We demonstrate a Si-mediated environmentally friendly reduction of graphene oxide (GO) and the fabrication of hybrid electrode materials with multiwall carbon nanotubes and nanofibers. The reduction of GO is facilitated by the nascent hydrogen generated by the reaction between Si and KOH. The overall process consumes 10 to 15 μm of Si each time and the same Si substrate can be used multiple times.


2012 ◽  
Vol 26 (21) ◽  
pp. 1250136 ◽  
Author(s):  
SAJJAD DEHGHANI ◽  
MOHAMMAD KAZEM MORAVVEJ-FARSHI ◽  
MOHAMMAD HOSSEIN SHEIKHI

We present a model to understand the effect of temperature on the electrical resistance of individual semiconducting single wall carbon nanotubes (s-SWCNTs) of various diameters under various electric fields. The temperature dependence of the resistance of s-SWCNTs and metallic SWCNTs (m-SWCNTs) are compared. These results help us to understand the temperature dependence of the resistance of SWCNTs network. We experimentally examine the temperature dependence of the resistance of random networks of SWCNTs, prepared by dispersing CNTs in ethanol and drop-casting the solution on prefabricated metallic electrodes. Examining various samples with different electrode materials and spacings, we find that the dominant resistance in determination of the temperature dependence of resistance of the network is the resistance of individual tubes, rather than the tube–tube resistance or tube–metal contact resistance. It is also found that the tube–tube resistance depends on the electrode spacing and it is more important for larger electrode spacings. By applying high electric field to burn the all-metallic paths of the SWCNTs network, the temperature dependence of the resistance of s-SWCNTs is also examined. We also investigate the effect of acid treatment of CNTs on the temperature dependence of the resistance of SWCNTs and also multi-wall CNTs (MWCNTs) networks.


Sign in / Sign up

Export Citation Format

Share Document