Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications

2018 ◽  
Vol 256 ◽  
pp. 656-664 ◽  
Author(s):  
Qu Zhou ◽  
Lingna Xu ◽  
Ahmad Umar ◽  
Weigen Chen ◽  
Rajesh Kumar
RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69999-70007 ◽  
Author(s):  
Linlin Wang ◽  
Afrasiab Ur Rehman ◽  
Hongyuan Wu ◽  
Baofeng Wu ◽  
Li Li ◽  
...  

Submicrochains composed of massage ball-like WO3@CuWO4 have been prepared via a simple Cu2+ intercalation method. WO3@CuWO4 submicrochains sensors displayed excellent sensing performance to CO gas at room temperature.


2021 ◽  
Vol 11 (11) ◽  
pp. 4903
Author(s):  
JinAh Hwang ◽  
Hyunsung Jung ◽  
Hyo-Soon Shin ◽  
Dae-Sung Kim ◽  
Dong Soo Kim ◽  
...  

Three types of In2O3 nanoparticles decorated with Au, Pd and Pt nanoparticles, respectively, were synthesized by thermal decomposition method, and the effects of metal nanoparticles on their phase, microstructure, chemical state, carrier types were investigated with XRD, SEM/TEM, and XPS. Additionally, sensing properties to CO gas, such as sensitivity, etc., were examined with sensing apparatus. Au-decorated In2O3 nanoparticles exhibited the highest sensitivity to CO gas, with S = 5.59 at a 10 ppm CO gas concentration at 50 °C compared to Pd or Pt-decorated In2O3 nanoparticles. This can be interpreted as a much higher adsorption of oxygen molecules on the In2O3 surface due to the high oxygen vacancies in the In2O3 lattice, which generates an electron depletion region in the outer layer of In2O3 to sharply increase the resistance or the spill-over effect due to Au nanoparticles on In2O3. Au nanoparticles were observed in the TEM images and confirmed by XPS analysis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3349
Author(s):  
Edi Radin ◽  
Goran Štefanić ◽  
Goran Dražić ◽  
Ivan Marić ◽  
Tanja Jurkin ◽  
...  

The dispersion of platinum (Pt) on metal oxide supports is important for catalytic and gas sensing applications. In this work, we used mechanochemical dispersion and compatible Fe(II) acetate, Sn(II) acetate and Pt(II) acetylacetonate powders to better disperse Pt in Fe2O3 and SnO2. The dispersion of platinum in SnO2 is significantly different from the dispersion of Pt over Fe2O3. Electron microscopy has shown that the elements Sn, O and Pt are homogeneously dispersed in α-SnO2 (cassiterite), indicating the formation of a (Pt,Sn)O2 solid solution. In contrast, platinum is dispersed in α-Fe2O3 (hematite) mainly in the form of isolated Pt nanoparticles despite the oxidative conditions during annealing. The size of the dispersed Pt nanoparticles over α-Fe2O3 can be controlled by changing the experimental conditions and is set to 2.2, 1.2 and 0.8 nm. The rather different Pt dispersion in α-SnO2 and α-Fe2O3 is due to the fact that Pt4+ can be stabilized in the α-SnO2 structure by replacing Sn4+ with Pt4+ in the crystal lattice, while the substitution of Fe3+ with Pt4+ is unfavorable and Pt4+ is mainly expelled from the lattice at the surface of α-Fe2O3 to form isolated platinum nanoparticles.


2019 ◽  
Author(s):  
Neetika ◽  
Arvind Kumar ◽  
Ramesh Chandra ◽  
V. K. Malik

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Hong-Di Zhang ◽  
Xu Yan ◽  
Zhi-Hua Zhang ◽  
Gu-Feng Yu ◽  
Wen-Peng Han ◽  
...  

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polyvinylpyrrolidone (PEDOT:PSS/PVP) composite nanofibers were successfully fabricated via electrospinning and used as a quartz crystal microbalance (QCM) sensor for detecting CO gas. The electrical property of individual PEDOT:PSS/PVP nanofibers was characterized and the room temperature resistivity was at the magnitude of 105 Ω·m. The QCM sensor based on PEDOT:PSS/PVP nanofibers was sensitive to low concentration (5–50 ppm) CO. In the range of 5–50 ppm CO, the relationship between the response of PEDOT:PSS nanofibers and the CO concentration was linear. Nevertheless, when the concentration exceeded 50 ppm, the adsorption of the nanofiber membrane for CO gas reached saturation and the resonant frequency range had no change. Therefore, the results open an approach to create electrospun PEDOT:PSS/PVP for gas sensing applications.


2019 ◽  
Vol 11 (5) ◽  
pp. 05040-1-05040-4
Author(s):  
Sumanta Kumar Tripathy ◽  
◽  
Sanjay Kumar ◽  
Divya Aparna Narava ◽  
◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 783 ◽  
Author(s):  
Andrea Gaiardo ◽  
David Novel ◽  
Elia Scattolo ◽  
Michele Crivellari ◽  
Antonino Picciotto ◽  
...  

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.


Sign in / Sign up

Export Citation Format

Share Document