High performance hydrogen gas sensors based on PdO-decorated p-type CoV2O6 nanoparticles

2020 ◽  
Vol 324 ◽  
pp. 128744
Author(s):  
M. Moschogiannaki ◽  
L. Zouridi ◽  
J. Sukunta ◽  
S. Phanichphant ◽  
E. Gagaoudakis ◽  
...  
2015 ◽  
Vol 3 (3) ◽  
pp. 1317-1324 ◽  
Author(s):  
Yanrong Wang ◽  
Bin Liu ◽  
Songhua Xiao ◽  
Han Li ◽  
Lingling Wang ◽  
...  

A catalytically activated hydrogen sensor is obtained based on Pd decorated WO3 nanoplates constructed by a solvothermal method.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 902 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Kim ◽  
Sang Kim

Metal oxide p-n heterojunction nanofibers (NFs) are among the most promising approaches to enhancing the efficiency of gas sensors. In this paper, we report the preparation of a series of p-NiO-loaded n-ZnO NFs, namely (1−x)ZnO-xNiO (x = 0.03, 0.05, 0.7, 0.1, and 0.15 wt%), for hydrogen gas sensing experiments. Samples were prepared through the electrospinning technique followed by a calcination process. The sensing experiments showed that the sample with 0.05 wt% NiO loading resulted in the highest sensing performance at an optimal sensing temperature of 200 °C. The sensing mechanism is discussed in detail and contributions of the p-n heterojunctions, metallization of ZnO and catalytic effect of NiO on the sensing enhancements of an optimized gas sensor are analyzed. This study demonstrates the possibility of fabricating high-performance H2 sensors through the optimization of p-type metal oxide loading on the surfaces of n-type metal oxides.


Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Ali Mirzaei ◽  
Hyoun Woo Kim ◽  
Sang Sub Kim

Metal oxide p-n heterojunction nanofibers (NFs) are among the most promising approaches to enhancing the efficiency of gas sensors. In this paper, we report the preparation of a series of p-NiO-loaded n-ZnO NFs, namely (1 − x) ZnO-xNiO (x = 0.03, 0.05, and 0.1 wt%), for hydrogen gas sensing experiments. Samples were prepared through the electrospinning technique followed by a calcination process. The sensing experiments showed that the sample with 0.05 wt% NiO loading resulted in the highest sensing performance at an optimal sensing temperature of 200 °C. The sensing mechanism is discussed in detail and contributions of the p-n heterojunctions, metallization of ZnO and catalytic effect of NiO on the sensing enhancements of an optimized gas sensor are analyzed. This study demonstrates the possibility of fabricating high-performance H2 sensors through the optimization of p-type metal oxide loading on the surfaces of n-type metal oxides.


2018 ◽  
Vol 435 ◽  
pp. 880-885 ◽  
Author(s):  
Erdal Turgut ◽  
Ömer Çoban ◽  
Sevda Sarıtaş ◽  
Sebahattin Tüzemen ◽  
Muhammet Yıldırım ◽  
...  

2006 ◽  
Vol 113 (2) ◽  
pp. 797-804 ◽  
Author(s):  
M. Ali ◽  
V. Cimalla ◽  
V. Lebedev ◽  
H. Romanus ◽  
V. Tilak ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1199-1202 ◽  
Author(s):  
Philip G. Neudeck ◽  
David J. Spry ◽  
Andrew J. Trunek ◽  
Laura J. Evans ◽  
Liang Yu Chen ◽  
...  

This paper reports on initial results from the first device tested of a “second generation” Pt-SiC Schottky diode hydrogen gas sensor that: 1) resides on the top of atomically flat 4H-SiC webbed cantilevers, 2) has integrated heater resistor, and 3) is bonded and packaged. With proper selection of heater resistor and sensor diode biases, rapid detection of H2 down to concentrations of 20 ppm was achieved. A stable sensor current gain of 125 ± 11 standard deviation was demonstrated during 250 hours of cyclic test exposures to 0.5% H2 and N2/air.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
A. Z. Sadek ◽  
D. Buso ◽  
A. Martucci ◽  
P. Mulvaney ◽  
W. Wlodarski ◽  
...  

Amorphous titanium dioxide (TiO2) and gold (Au) dopedTiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-dopedTiO2films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto64∘YXLiNbO3SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and310∘C. It was found that gold doping onTiO2increased the device sensitivity and reduced the optimum operating temperature.


Author(s):  
H. El Matbouly ◽  
F. Domingue ◽  
V. Palmisano ◽  
L. Boon-Brett

Sign in / Sign up

Export Citation Format

Share Document