Soil health through soil disease suppression: Which strategy from descriptors to indicators?

2007 ◽  
Vol 39 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Céline Janvier ◽  
François Villeneuve ◽  
Claude Alabouvette ◽  
Véronique Edel-Hermann ◽  
Thierry Mateille ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1501
Author(s):  
Iratxe Zarraonaindia ◽  
Xabier Simón Martínez-Goñi ◽  
Olaia Liñero ◽  
Marta Muñoz-Colmenero ◽  
Mikel Aguirre ◽  
...  

Environmentally friendly agricultural production necessitates manipulation of microbe–plant interactions, requiring a better understanding of how farming practices influence soil microbiota. We studied the effect of conventional and organic treatment on soil bacterial richness, composition, and predicted functional potential. 16S rRNA sequencing was applied to soils from adjacent plots receiving either a synthetic or organic fertilizer, where two crops were grown within treatment, homogenizing for differences in soil properties, crop, and climate. Conventional fertilizer was associated with a decrease in soil pH, an accumulation of Ag, Mn, As, Fe, Co, Cd, and Ni; and an enrichment of ammonia oxidizers and xenobiotic compound degraders (e.g., Candidatus Nitrososphaera, Nitrospira, Bacillus, Pseudomonas). Soils receiving organic fertilization were enriched in Ti (crop biostimulant), N, and C cycling bacteria (denitrifiers, e.g., Azoarcus, Anaerolinea; methylotrophs, e.g., Methylocaldum, Methanosarcina), and disease-suppression (e.g., Myxococcales). Some predicted functions, such as glutathione metabolism, were slightly, but significantly enriched after a one-time manure application, suggesting the enhancement of sulfur regulation, nitrogen-fixing, and defense of environmental stressors. The study highlights that even a single application of organic fertilization is enough to originate a rapid shift in soil prokaryotes, responding to the differential substrate availability by promoting soil health, similar to recurrent applications.


2021 ◽  
Vol 22 (19) ◽  
pp. 10388
Author(s):  
Kalaivani Nadarajah ◽  
Nur Sabrina Natasha Abdul Rahman

Soil health and fertility issues are constantly addressed in the agricultural industry. Through the continuous and prolonged use of chemical heavy agricultural systems, most agricultural lands have been impacted, resulting in plateaued or reduced productivity. As such, to invigorate the agricultural industry, we would have to resort to alternative practices that will restore soil health and fertility. Therefore, in recent decades, studies have been directed towards taking a Magellan voyage of the soil rhizosphere region, to identify the diversity, density, and microbial population structure of the soil, and predict possible ways to restore soil health. Microbes that inhabit this region possess niche functions, such as the stimulation or promotion of plant growth, disease suppression, management of toxicity, and the cycling and utilization of nutrients. Therefore, studies should be conducted to identify microbes or groups of organisms that have assigned niche functions. Based on the above, this article reviews the aboveground and below-ground microbiomes, their roles in plant immunity, physiological functions, and challenges and tools available in studying these organisms. The information collected over the years may contribute toward future applications, and in designing sustainable agriculture.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 77
Author(s):  
Rajagopal ◽  
Duff ◽  
Hall

Biofumigation involves growing specialised cover crops that have the ability to suppress certain soil-borne diseases. Species such as those in the Brassicaceae family, (e.g., radish, mustard and rocket) are known to have this capability. Biofumigation activity is initiated by the degradation of glucosinolates within the tissues of the plant when the crop is incorporated into the soil at approx. 25% flowering rate. In this experiment, nine bio-fumigant varieties were assessed over six planting dates for biomass yield, irrigation management, glucosinolate concentration and efficacy against three soilborne pathogens, namely; Sclerotium rolfsii, Sclerotinia sclerotiorum and Macrophomina phaseolina. Preliminary results showed incorporation dates varied across varieties and planting times. Winter planting had highest biomass yield across all varieties, compared with the summer plantings (e.g., 14.82 t/ha in winter, versus 5.02 t/ha in summer for Caliente). The efficacy of disease suppression was variable between variety and planting date. For example, Nemfix and BQ Mulch produced a higher percentage mortality rate (100% and 98%) against S. sclerotiorum, compared with autumn (22% and 12%) and winter (37% and 13%) planting. High glucosinolate production was observed during the summer plantings, where irrigation treatments including drought conditions (Low; 0.75 ML/ha), moderate watering (Medium; 2 ML/ha) and field capacity (High; 2.5 ML/ha) were applied. Increased glucosinolate concentrations were observed in the Low irrigation treatments (e.g., Mustclean; 32.31 μmol/g DW), versus High irrigation (e.g., Mustclean; 17.11 μmol/g DW). Summer data pending analysis. These findings can help growers to identify biofumigant varieties that compliment rotation program and optimise disease management practices.


Plant Disease ◽  
2009 ◽  
Vol 93 (2) ◽  
pp. 175-179 ◽  
Author(s):  
Wade H. Elmer

Earthworm densities have been regarded as reliable indicators of soil health, but their role in suppression of plant disease has not received much attention. Several greenhouse studies were done to determine if soils infested with soilborne pathogens and augmented with earthworms (Lumbricus terrestris) could reduce disease of susceptible cultivars of asparagus (Asparagus officinalis), eggplant (Solanum melongena), and tomato (Solanum lycopersicum). Soils planted with asparagus were infested with Fusarium oxysporum f. sp. asparagi and F. proliferatum, eggplant with Verticillium dahliae, and tomato with F. oxysporum f. sp. lycopersici Race 1. In each host–disease system, earthworm activity was associated with an increase in plant growth and a decrease in disease. In general, plant weights were increased 60 to 80% and estimates of disease (area under the disease progress curve, percent vascular discoloration, and percent root lesions) were reduced 50 to 70% when soils were augmented with earthworms. Soil dilutions on selective media revealed that densities of fluorescent pseudomonads and filamentous actinomycetes were consistently higher for rhizosphere soils augmented with earthworms. In the studies with Verticillium wilt of eggplant, compared to the controls, the densities of total bacteria and Mn-transforming microbes were reduced in the presence of earthworms while population densities of bacilli and Trichoderma spp. were not affected. Disease suppression may have been mediated through microbiological activity. These studies suggest that strategies to increase earthworm densities in soil should suppress soilborne diseases.


2021 ◽  
Vol 13 (14) ◽  
pp. 7608
Author(s):  
Giuliano Bonanomi ◽  
Mohamed Idbella ◽  
Ahmed M. Abd-ElGawad

Both soil and the human gut support vast microbial biodiversity, in which the microbiota plays critical roles in regulating harmful organisms. However, the functional link between microbiota taxonomic compositions and disease suppression has not been explained yet. Here, we provide an overview of pathogen regulation in soil and mammals gut, highlighting the differences and the similarities between the two systems. First, we provide a review of the ecological mechanisms underlying the regulation of soil and pathogens, as well as the link between disease suppression and soil health. Particular emphasis is thus given to clarifying how soil and the gut microbiota are associated with organic amendment and the human diet, respectively. Moreover, we provide several insights into the importance of organic amendment and diet composition in shaping beneficial microbiota as an efficient way to support crop productivity and human health. This review also discusses novel ways to functionally characterize organic amendments and the proper operational combining of such materials with beneficial microbes for stirring suppressive microbiota against pathogens. Furthermore, specific examples are given to describe how agricultural management practices, including the use of antibiotics and fumigants, hinder disease suppression by disrupting microbiota structure, and the potentiality of entire microbiome transplant. We conclude by discussing general strategies to promote soil microbiota biodiversity, the connection with plant yield and health, and their possible integration through a “One Health” framework.


2021 ◽  
Vol 9 (8) ◽  
pp. 1660
Author(s):  
Jianjun Hao ◽  
Katherine Ashley

Soilborne diseases are a major constraining factor to soil health and plant health in potato production. In the toolbox of crop management, soil amendments have shown benefits to control these diseases and improve soil quality. Most amendments provide nutrients to plants and suppress multiple soilborne pathogens. Soil amendments are naturally derived materials and products and can be classified into fresh or living plants, organic or inorganic matters, and microbial supplements. Fresh plants have unique functions and continuously exude chemicals to interact with soil microbes. Organic and inorganic matter contain high levels of nutrients, including nitrogen and carbon that plants and soil microorganisms need. Soil microorganisms, whether being artificially added or indigenously existing, are a key factor in plant health. Microbial communities can be considered as a biological reactor in an ecosystem, which suppress soilborne pathogens in various mechanisms and turn soil organic matter into absorbable forms for plants, regardless of amendment types. Therefore, soil amendments serve as an energy input, nutrient source, and a driving force of microbial activities. Advanced technologies, such as microbiome analyses, make it possible to analyze soil microbial communities and soil health. As research advances on mechanisms and functions, amendment-based strategies will play an important role in enhancing soil health and disease suppression for better potato production.


2012 ◽  
Vol 1 (2) ◽  
pp. 235 ◽  
Author(s):  
Ebimieowei Etebu ◽  
A. Mark Osborn

<p>The quality of a soil is often viewed in relation to its ability to suppress plant disease and enhance agricultural productivity. A soil is considered suppressive when, in spite of favourable conditions for disease incidence and development, a pathogen cannot become established, or establishes but produces no disease, or establishes and produces disease for a short time and then declines. The interplay of biotic and abiotic factors has long been known to assert disease suppressive capabilities or otherwise. However, the multi-functionality of soil makes the identification of a single property as a general indicator of soil health an uphill task. In this paper, therefore, some indicators of soil health important to agriculture are reviewed with emphasis on pea footrot disease suppression potentials. Findings show that footrot disease due to <em>Nectria haematococca </em>(anamorph <em>Fusarium solani </em>f.sp <em>pisi</em>) is a globally, economically important disease of peas, and an initial inoculum density of ? 100 pathogenic forms of <em>N. haematococca </em>cells would produce an appreciable level of pea footrot disease depending on the relative amount of phosphorus, carbon and nitrogen present in soil. It would be desirable to confirm pea footrot disease models obtained from pot experiments with results from field experiments.</p>


Author(s):  
Raymond O. García-Rodríguez ◽  
Lindsey D. Thiessen

The soil-borne bacterium Ralstonia solanacearum continues to represent a major threat to flue-cured tobacco (Nicotiana tabacum) production in the southeastern United States and other major producing regions throughout the world. Beneficial microorganisms naturally found in the soil represent an alternative solution for R. solanacearum’s suppression that may reduce soil health impacts of current management strategies. Biological controls and microbiota manipulation together represent a unique opportunity to reduce disease caused by R. solanacearum. Current high-throughput DNA sequencing technologies and advances in bioinformatic analyses enable culture-independent approaches to study root-associated microorganisms and their interactions. The structure and dynamics of tobacco root-associated microbiota, as well as functional capacities of certain taxa, may improve how we apply disease management strategies in the field. Through this review we summarize our current understanding on (i) the role of bacterial microbiota on R. solanacearum survival, (ii) the impacts of current management strategies on the soil bacterial communities, (iii) the rhizospheric and core microbiome composition and inheritance, (iv) the manipulation of the microbiota for enhanced disease suppression, and (v) the shortcomings of the application of plant-associated bacteria for disease suppression.


2020 ◽  
Vol 11 (3) ◽  
pp. 274-286
Author(s):  
Ankita Begam ◽  
◽  
Ramyajit Mondal ◽  
Susanta Dutta ◽  
Hirak Banerjee ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document