scholarly journals Use of electronic nose technology to measure soil microbial activity through biogenic volatile organic compounds and gases release

2011 ◽  
Vol 43 (10) ◽  
pp. 2094-2107 ◽  
Author(s):  
Fabrizio De Cesare ◽  
Elena Di Mattia ◽  
Simone Pantalei ◽  
Emiliano Zampetti ◽  
Vittorio Vinciguerra ◽  
...  
Author(s):  
Fabrizio De Cesare ◽  
Elena Di Mattia ◽  
Simone Pantalei ◽  
Emiliano Zampetti ◽  
Vittorio Vinciguerra ◽  
...  

2011 ◽  
Author(s):  
Fabrizio De Cesare ◽  
Fabrizio De Cesare ◽  
Elena Di Mattia ◽  
Simone Pantalei ◽  
Emiliano Zampetti ◽  
...  

2021 ◽  
pp. 130124
Author(s):  
Patrick P. Conti ◽  
Rafaela S. Andre ◽  
Luiza A. Mercante ◽  
Lucas Fugikawa-Santos ◽  
Daniel S. Correa

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 584
Author(s):  
Kelvin de Jesús Beleño-Sáenz ◽  
Juan Martín Cáceres-Tarazona ◽  
Pauline Nol ◽  
Aylen Lisset Jaimes-Mogollón ◽  
Oscar Eduardo Gualdrón-Guerrero ◽  
...  

More effective methods to detect bovine tuberculosis, caused by Mycobacterium bovis, in wildlife, is of paramount importance for preventing disease spread to other wild animals, livestock, and human beings. In this study, we analyzed the volatile organic compounds emitted by fecal samples collected from free-ranging wild boar captured in Doñana National Park, Spain, with an electronic nose system based on organically-functionalized gold nanoparticles. The animals were separated by the age group for performing the analysis. Adult (>24 months) and sub-adult (12–24 months) animals were anesthetized before sample collection, whereas the juvenile (<12 months) animals were manually restrained while collecting the sample. Good accuracy was obtained for the adult and sub-adult classification models: 100% during the training phase and 88.9% during the testing phase for the adult animals, and 100% during both the training and testing phase for the sub-adult animals, respectively. The results obtained could be important for the further development of a non-invasive and less expensive detection method of bovine tuberculosis in wildlife populations.


2011 ◽  
Vol 45 (34) ◽  
pp. 6191-6196 ◽  
Author(s):  
Yu Huang ◽  
Steven Sai Hang Ho ◽  
Kin Fai Ho ◽  
Shun Cheng Lee ◽  
Yuan Gao ◽  
...  

2016 ◽  
Vol 9 (5) ◽  
pp. 1959-1976 ◽  
Author(s):  
Chun Zhao ◽  
Maoyi Huang ◽  
Jerome D. Fast ◽  
Larry K. Berg ◽  
Yun Qian ◽  
...  

Abstract. Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.


2016 ◽  
Vol 42 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Silvano Dragonieri ◽  
Vitaliano Nicola Quaranta ◽  
Pierluigi Carratu ◽  
Teresa Ranieri ◽  
Onofrio Resta

We aimed to investigate the effects of age and gender on the profile of exhaled volatile organic compounds. We evaluated 68 healthy adult never-smokers, comparing them by age and by gender. Exhaled breath samples were analyzed by an electronic nose (e-nose), resulting in "breathprints". Principal component analysis and canonical discriminant analysis showed that older subjects (≥ 50 years of age) could not be distinguished from younger subjects on the basis of their breathprints, as well as that the breathprints of males could not distinguished from those of females (cross-validated accuracy, 60.3% and 57.4%, respectively).Therefore, age and gender do not seem to affect the overall profile of exhaled volatile organic compounds measured by an e-nose.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 360
Author(s):  
Tianqi Lu ◽  
Ammar Al-Hamry ◽  
José Mauricio Rosolen ◽  
Zheng Hu ◽  
Junfeng Hao ◽  
...  

We investigated functionalized graphene materials to create highly sensitive sensors for volatile organic compounds (VOCs) such as formaldehyde, methanol, ethanol, acetone, and isopropanol. First, we prepared VOC-sensitive films consisting of mechanically exfoliated graphene (eG) and chemical graphene oxide (GO), which have different concentrations of structural defects. We deposited the films on silver interdigitated electrodes on Kapton substrate and submitted them to thermal treatment. Next, we measured the sensitive properties of the resulting sensors towards specific VOCs by impedance spectroscopy. We obtained the eG- and GO-based electronic nose composed of two eG films- and four GO film-based sensors with variable sensitivity to individual VOCs. The smallest relative change in impedance was 5% for the sensor based on eG film annealed at 180 °C toward 10 ppm formaldehyde, whereas the highest relative change was 257% for the sensor based on two-layers deposited GO film annealed at 200 °C toward 80 ppm ethanol. At 10 ppm VOC, the GO film-based sensors were sensitive enough to distinguish between individual VOCs, which implied excellent selectivity, as confirmed by Principle Component Analysis (PCA). According to a PCA-Support Vector Machine-based signal processing method, the electronic nose provided identification accuracy of 100% for individual VOCs. The proposed electronic nose can be used to detect multiple VOCs selectively because each sensor is sensitive to VOCs and has significant cross-selectivity to others.


Sign in / Sign up

Export Citation Format

Share Document