Seismic responses of a subway station and tunnel in a slightly inclined liquefiable ground through shaking table test

2019 ◽  
Vol 116 ◽  
pp. 371-385 ◽  
Author(s):  
Zhuang Haiyang ◽  
Wang Xu ◽  
Miao Yu ◽  
Yao Erlei ◽  
Chen Su ◽  
...  
2020 ◽  
Vol 17 (5) ◽  
pp. 1251-1268
Author(s):  
Jian-jing Zhang ◽  
Jia-yong Niu ◽  
Xiao Fu ◽  
Li-cong Cao ◽  
Qiang Xie

2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Baizan Tang ◽  
Xiaojun Li ◽  
Su Chen ◽  
Lihong Xiong

The expansive polystyrene granule cement (EPSC) latticed concrete wall is a new type of energy-saving wall material with load-bearing, insulation, fireproof, and environmental protection characteristics. A series of shaking table tests were performed to investigate the seismic behavior of a full-scale reinforced concrete (RC) frame with EPSC latticed concrete infill wall, and data obtained from the shaking table test were analyzed. The experimental results indicate that the designed RC frame with EPSC latticed concrete infill wall has satisfactory seismic performance subjected to earthquakes, and the seismic responses of the model structure are more sensitive to input motions with more high frequency components and long duration. The EPSC latticed concrete infill wall provided high lateral stiffness so that the walls can be equivalent to a RC shear wall. The horizontal and vertical rebar, arranged in the concrete lattice beam and column, could effectively restrain the latticed concrete infill wall and RC frame. To achieve a more comprehensive evaluation on the performance of the RC frame with latticed concrete infill walls, further research on its seismic responses is expected by comparing with conventional infill walls and nonlinear analytical method.


2013 ◽  
Vol 694-697 ◽  
pp. 321-324 ◽  
Author(s):  
Shu Wei Wang ◽  
Ying Ming Zhou ◽  
Shu Yun Mi

In this paper, a three-dimensional shaking table test of three three-span subway station model is done. Three test seismic waves were selected in this experiment, which were applied to the model. Modal analysis of the structure was done, and the determination of the acceleration of the model structure was obtained. And the law of underground structures under earthquake damage was analysis. Soil surface acceleration process and its response spectrum and strain are obtained in the different amplitudes of ground motion input case. From experiment cracks in the emergence and development of the situation were observed, and which gives recommendations for the seismic design of underground structures.


2017 ◽  
Vol 11 (05) ◽  
pp. 1750020 ◽  
Author(s):  
Ma Xianfeng ◽  
Wang Guobo ◽  
Wu Jun ◽  
Ji Qianqian

Shaking table tests were conducted on typical models of subway structures subjected to several seismic shaking time histories to study seismic response of subway structures in soft ground as well as to provide data for validation of seismic design methods for underground structure. Three types of tests were presented herein, namely green field test, subway station test, and test for joint structure between subway station and tunnel. The similitude and modeling aspects of the 1g shaking table test are discussed. The seismic response of Shanghai clay in different depths was examined under different input waves to understand the acceleration amplification feature in both green field and in the presence of underground structure. Damage situation was checked on internal sections of both subway station and tunnels by halving the model structure. Structure deformation was investigated in terms of element strain under different earthquake loadings. The findings from this study provides useful pointers for future shaking table tests on underground structures/facilities, and the seismic response characteristic of underground structure derived from the shaking table test could be helpful for validating seismic design method for subway station.


2010 ◽  
Vol 163-167 ◽  
pp. 4014-4021
Author(s):  
Xiang Yun Huang ◽  
Fu Lin Zhou ◽  
She Liang Wang ◽  
Liu Han Wen Heisha ◽  
Xue Hai Luo

Isolation technique has been acceded as a part of the China Seismic Code for Design of Buildings. In this code, the limitations for using isolation design are very strict, superstructure must be regular and the isolation layer must be located on the top of base (base isolated structure). Because of the needs of architecture and function or the feasibility of technique, some limitations have been broken in recent projects. Sometimes isolated layer can be set on the intermediate story, so-called the mid-story isolated structure. According to the characteristic of structure, isolation layer of mid-story isolated structure is set on a place where the structure’s vertical stiffness is suddenly changed, as like the top of the first story, middle story, conversion story of the structure. Laminated rubber bearings (LRB) are adopted as an isolation layer. Because the isolation layer is set on intermediate story, the whole structure is divided into superstructure and substructure; the structure’s dynamic characteristics are changed. The mechanism of mid-story isolated structure appears different characteristic compared with base isolation. The aim of mid-story isolation is not only to reduce seismic responses of superstructure, but also to reduce seismic responses of the substructure. Theoretical analysis and the shaking table test of the mid-story isolated structure were carried. And the response of mid-story isolated structure is discussed by comparing with the response of base-isolated structure and base fixed structure. The key problems of mid-story isolated structure are the force condition and the interaction of the structure up and below the isolation layer. Many factors, such as the number of story, mass, stiffness of superstructure and substructure, parameter of the isolation layer, have influence on the seismic behavior of the mid-story isolated structure. The optimum combination relationship of these factors is presented and dynamic characteristics and dynamic responses are investigated.


2014 ◽  
Vol 1020 ◽  
pp. 457-462
Author(s):  
Miao Han ◽  
Yan Ling Duan ◽  
Huan Sun

The shaking table tests of a 1:7 scale model of three-floor steel frame base-isolated building was completed to study the seismic responses of base-isolated buildings under near-fault ground motions. Under the action of the typical near-fault seismic wave, the seismic responses of base-isolated structures increase with the increase of PGA. The maximum story displacements of super-structure decrease with increase of story. The velocity pulse has an adverse effect to acceleration responses of base-isolated structures. The isolation effect of base-isolated super-structures is still favorable under near-fault ground motions, but it will be necessary to add damping in isolation system or limit the displacement of bearings to prevent the excessive deformation of isolation layer.


Sign in / Sign up

Export Citation Format

Share Document