Solar repowering of PCC-retrofitted power plants; solar thermal plant dynamic modelling and control strategies

Solar Energy ◽  
2015 ◽  
Vol 119 ◽  
pp. 507-530 ◽  
Author(s):  
Forough Parvareh ◽  
Dia Milani ◽  
Manish Sharma ◽  
Matteo Chiesa ◽  
Ali Abbas
Author(s):  
Petrus D. Kemp ◽  
Chris Nieuwoudt

A large interest in High Temperature Gas-cooled Reactors (HTGR) has been shown in recent years. HTGR power plants show a number of advantages over existing technology including improved safety, modular design and high temperatures for process heat applications. HTGR plants with closed loop direct cycle power conversion units have unique transient responses which is different from existing nuclear plants as well as conventional non-nuclear power plants. The operation and control for a HTGR power plant therefore poses new and different challenges. This paper describes the modes of operation for the Pebble Bed Modular Reactor (PBMR) demonstration plant. The PBMR demonstration plant is an advanced helium-cooled, graphite-moderated HTGR consisting of a closed loop direct cycle power conversion unit. The use of transient analysis simulation makes it possible to develop effective control strategies and design controllers for use in the power conversion unit as well as the reactor. In addition to plant controllers the operator tasks and operational technical specifications can be developed and evaluated making use of transient analysis simulation of the plant together with the control system. The main challenges in the operation and control of the reactor and power conversion unit are highlighted with simulation results. Control strategies in different operating regions are shown and results for the power conversion unit start-up transition and the loss of the grid connection during power operation are presented.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2358 ◽  
Author(s):  
Omar Mohamed ◽  
Ashraf Khalil

This paper reviews the modeling techniques and control strategies applied to gas turbine power generation plants. Recent modeling philosophies are discussed and the state-of-the-art feasible strategies for control are shown. Research conducted in the field of modeling, simulation, and control of gas turbine power plants has led to notable advancements in gas turbines’ operation and energy efficiency. Tracking recent achievements and trends that have been made is essential for further development and future research. A comprehensive survey is presented here that covers the outdated attempts toward the up-to-date techniques with emphasis on different issues and turbines’ characteristics. Critical review of the various published methodologies is very useful in showing the importance of this research area in practical and technical terms. The different modeling approaches are classified and each category is individually investigated by reviewing a considerable number of research articles. Then, the main features of each category or approach is reported. The modern multi-variable control strategies that have been published for gas turbines are also reviewed. Moreover, future trends are proposed as recommendations for planned research.


2002 ◽  
Vol 26 (4) ◽  
pp. 191-210 ◽  
Author(s):  
Anca D. Hansen ◽  
Poul Sørensen ◽  
Frede Blaabjerg ◽  
John Becho

This paper describes a dynamic model of a wind farm and its nearest utility grid. It is intended to use this model in studies addressing the dynamic interaction between a wind farm and a power system, both during normal operation of the wind farm and during transient grid fault events. The model comprises the substation where the wind farm is connected, the internal power collection system of the wind farm, the electrical, mechanical and aerodynamic models for the wind turbines, and a wind model. The integrated model is built to enable the assessment of power quality and control strategies. It is implemented in the commercial dedicated power system simulation tool DIgSILENT.


2010 ◽  
Vol 1 (08) ◽  
pp. 232-236 ◽  
Author(s):  
J. Gall ◽  
D. Abel ◽  
N. Ahlbrink ◽  
R. Pitz-Paal ◽  
J. Andersson ◽  
...  

Fuel ◽  
2014 ◽  
Vol 116 ◽  
pp. 672-691 ◽  
Author(s):  
Thanita Nittaya ◽  
Peter L. Douglas ◽  
Eric Croiset ◽  
Luis A. Ricardez-Sandoval

2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Kamran Mahboob ◽  
Qasim Awais ◽  
Muhammad Awais ◽  
Ahsan Naseem ◽  
Safi Ullah ◽  
...  

An important part of future global energy depends on the development of the solar industry. To date, we have noticed the shift from fossil fuels energy towards renewable energy. The past decade has shown significant progress in computer science, and CAD is increasingly used for design and development. Visualization of the data generated from the models in the CAD program plays an important role in the creation of state-of-the-art designs. An important limitation during the design phase is the visualization of three-dimensional geometry. This article attempts to illustrate the use of VR technologies in solar thermal power plant development. This article analyzes various strategies and methods for the visualization of CAD models in virtual reality. Android phone interfaces with a desktop computer, as well as head movement control strategies, are discussed. It is concluded that VR technologies can help with visualization, as well as in the development of the field of solar thermal power plants, having minimal design-related issues.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2935
Author(s):  
Omar Mohamed ◽  
Ashraf Khalil ◽  
Jihong Wang

This paper presents a critical review of the research conducted for modeling and controlling supercritical power plants. Thermal power plants are classified according to the boiler pressure to supercritical and subcritical. The modeling concepts and control strategies of supercritical generation units are far more complex than those of subcritical. On the other hand, supercritical generation technologies are more efficient and much cleaner than subcritical generation units. From a deep technical analysis of the literature, there is no review that is dedicated to models-based control of supercritical power plants and most previous reviews are found to be too general to modeling-based control of fossil fuelled energy sources. This review reports the advancements on modeling and control of supercritical and ultra-supercritical plants as cleaner generation technologies. The various published achievements for modeling supercritical and ultra-supercritical units have been reviewed. The control strategies that fulfill the practical load demand requirements while keeping optimum efficiencies are also reviewed. Finally, expected future directions are reported as recommendations to overcome future challenges. The paper can be used as a brief educational directory to the postgraduate students or future researchers in the field.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Yolanda Lechón ◽  
Cristina de la Rúa ◽  
Rosa Sáez

The objectives of the analysis reported in this paper are to evaluate the environmental impacts of the electricity produced in a 17MW solar thermal plant with central tower technology and a 50MW solar thermal plant with parabolic trough technology, to identify the opportunities to improve the systems in order to reduce their environmental impacts, and to evaluate the environmental impact resulting from compliance with the solar thermal power objectives in Spain. The methodology chosen is the life cycle assessment (LCA), described in the international standard series ISO 14040-43. The functional unit has been defined as the production of 1kWh of electricity. Energy use needed to construct, operate, and dismantle the power plants is estimated. These results are used to calculate the “energy payback time” of these technologies. Results were around 1yr for both power plants. Environmental impacts analyzed include the global warming impacts along the whole life cycle of the power plants, which were around 200g∕kWh generated. Finally, the environmental impacts associated with the compliance of the solar thermal power objectives in Spain were computed. Those figures were then used to estimate the avoided environmental impacts including the potential CO2 emission savings that could be accomplished by these promotion policies. These savings amounted for 634kt of CO2 equiv./yr.


1993 ◽  
Vol 46 (11S) ◽  
pp. S165-S172
Author(s):  
A. Ercoli-Finzi ◽  
P. Mantegazza

In this work the dynamics of a manipulator arm is analyzed by Maggi’s formulation and by automatic development of the equations of motion. Two control strategies, that is an adaptive and a standard one, are taken into account in order to satisfactory perform pick and place maneuvers. Numerical simulations emphasize performance qualities and limits of the two choices and suggest a possible implementation of mixed control strategies.


Sign in / Sign up

Export Citation Format

Share Document