High-performance and long-term stable inverted ternary solar cells based on PTB7-Th/N2200/PC71BM blends

Solar Energy ◽  
2018 ◽  
Vol 176 ◽  
pp. 170-177 ◽  
Author(s):  
Chih-Ping Chen ◽  
Yao-Yu Tsai ◽  
Yung-Chung Chen ◽  
Yan-Heng Li
Keyword(s):  
RSC Advances ◽  
2020 ◽  
Vol 10 (59) ◽  
pp. 35831-35839 ◽  
Author(s):  
Mustafa K. A. Mohammed

Carbon-based perovskite solar cells (C-PSCs) are the most promising photovoltaic (PV) due to their low material and manufacturing cost and superior long-term stability.


2019 ◽  
Vol 12 (2) ◽  
pp. 675-683 ◽  
Author(s):  
Yue Wu ◽  
Hang Yang ◽  
Yan Zou ◽  
Yingying Dong ◽  
Jianyu Yuan ◽  
...  

A dialkylthio-substituted conjugated polymer is designed and synthesized as a donor material for high-performance polymer solar cells with long-term stability.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2249
Author(s):  
Sanghyun Paek

Recently, perovskite solar cells have been in the spotlight due to several of their advantages. Among the components of PSCs, hole transporting materials (HTMs) re the most important factors for achieving high performance and a stable device. Here, we introduce a new D–π–D type hole transporting material incorporating Tips-anthracene as a π–conjugation part and dimethoxy-triphenylamine as a donor part (which can be easily synthesized using commercially available materials). Through the measurement of various optical properties, the new HTM not only has an appropriate energy level but also has excellent hole transport capability. The device with PEH-16 has a photovoltaic conversion efficiency of 17.1% under standard one sun illumination with negligible hysteresis, which can be compared to a device using Spiro_OMeTAD under the same conditions. Ambient stability for 1200 h shown that 98% of PEH-16 device from the initial PCE was retained, indicating that the devices had good long-term stability.


2016 ◽  
Vol 26 (30) ◽  
pp. 5400-5407 ◽  
Author(s):  
Bonkee Koo ◽  
Heesuk Jung ◽  
Minwoo Park ◽  
Jae-Yup Kim ◽  
Hae Jung Son ◽  
...  

2015 ◽  
Vol 3 (17) ◽  
pp. 9271-9277 ◽  
Author(s):  
Hsiang-Lin Hsu ◽  
Ching-Chih Chang ◽  
Chih-Ping Chen ◽  
Bing-Huang Jiang ◽  
Ru-Jong Jeng ◽  
...  

Perovskite solar cells display great commercialization potential. Ethylammonium iodide (EAI) has been used as an additive for perovskite solar cells. The EAI-derived devices displayed enhanced PCEs and long term thermal stability.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 386
Author(s):  
Simone M. P. Meroni ◽  
Carys Worsley ◽  
Dimitrios Raptis ◽  
Trystan M. Watson

Perovskite solar cells (PSCs) have already achieved comparable performance to industrially established silicon technologies. However, high performance and stability must be also be achieved at large area and low cost to be truly commercially viable. The fully printable triple-mesoscopic carbon perovskite solar cell (mCPSC) has demonstrated unprecedented stability and can be produced at low capital cost with inexpensive materials. These devices are inherently scalable, and large-area modules have already been fabricated using low-cost screen printing. As a uniquely stable, scalable and low-cost architecture, mCPSC research has advanced significantly in recent years. This review provides a detailed overview of advancements in the materials and processing of each individual stack layer as well as in-depth coverage of work on perovskite formulations, with the view of highlighting potential areas for future research. Long term stability studies will also be discussed, to emphasise the impressive achievements of mCPSCs for both indoor and outdoor applications.


2021 ◽  
Author(s):  
Yu An ◽  
Carlo Andrea Riccardo Perini ◽  
Juanita Hidalgo ◽  
Andrés-Felipe Castro-Méndez ◽  
Vagott Jacob N. ◽  
...  

One of the organic component in the perovskite photo-absorber, the methylammonium cation, has been suggested to be a roadblock to long-term operation of organic-inorganic hybrid perovskite-based solar cells. Methylammonium-free perovskites thus represent a possible direction for more stable photo-absorbers that are also compatible with multijunction solar cells. However, most work on methylammonium-free perovskites involves cesium and formamidinium as the A-site cations, which are thermodynamically less stable than the methylammonium-based materials. In this work we systematically explore the crystallographic and optical properties of the compositional space of mixed cation and mixed halide lead perovskites, where formamidinium (FA+) is gradually replaced by cesium (Cs+), and iodide (I-) is substituted by bromide (Br-), i.e., CsyFA1–yPb(BrxI1–x)3. The crystal phases, which could be tuned by changing the tolerance factor for mixed perovskite alloys, are qualitatively determined and the composition–structure relationship is established in the CsyFA1–yPb(BrxI1–x)3 compositional space. We find that higher tolerance factors lead to more cubic structures, whereas lower tolerance factors lead to more orthorhombic. We also find that while some correlation exists between tolerance factor and structure, tolerance factor does not provide a holistic understanding of whether a perovskite structure will fully form. Given the wide range of bandgaps produced by this compositional space, an empirical expression is devised to predict the optical bandgap of CsyFA1–yPb(BrxI1–x)3 perovskites – which changes as a function of composition –, conducive to the design of absorbers with bandgaps tailor-made for specific tandem and single-junction applications. By screening 26 solar cells with different compositions, we find that Cs1/6FA5/6PbI3 delivers the highest efficiency and long-term stability among I-rich compositions. This work sheds light on the fundamental structure-property relationships in the CsyFA1–yPb(BrxI1–x)3 compositional space, providing vital insight to the design of durable perovskite materials. Our approach provides a library of structural and optoelectronic information of this compositional space.


2019 ◽  
Vol 8 (1) ◽  
pp. 1901017
Author(s):  
Qianjin Zhu ◽  
Jihuai Wu ◽  
Pengqiang Yuan ◽  
Mingjing Zhang ◽  
Yanfei Dou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document