Analytical models of on-resistance and breakdown voltage for 4H-SiC floating junction Schottky barrier diodes

2015 ◽  
Vol 103 ◽  
pp. 83-89 ◽  
Author(s):  
Hao Yuan ◽  
Xiaoyan Tang ◽  
Qingwen Song ◽  
Yimen Zhang ◽  
Yuming Zhang ◽  
...  
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2387
Author(s):  
Nicolas Rouger ◽  
Aurélien Maréchal

Owing to its outstanding electro-thermal properties, such as the highest thermal conductivity (22 W/(cm∙K) at room temperature), high hole mobility (2000 cm2/(V∙s)), high critical electric field (10 MV/cm) and large band gap (5.5 eV), diamond represents the ultimate semiconductor for high power and high temperature power applications. Diamond Schottky barrier diodes are good candidates for short-term implementation in power converters due to their relative maturity. Nonetheless, diamond as a semiconductor for power devices leads to specificities such as incomplete dopant ionization at room temperature and above, and the limited availability of implantation techniques. This article presents such specificities and their impacts on the optimal design of diamond Schottky barrier diodes. First, the tradeoff between ON-state and OFF-state is discussed based on 1D analytical models. Then, 2D numerical studies show the optimal design of floating metal rings to improve the effective breakdown voltage. Both analyses show that the doping of the drift region must be reduced to reduce leakage currents and to increase edge termination efficiency, leading to better figures of merit. The obtained improvements in breakdown voltage are compared with fabrication challenges and the impacts on forward voltage drop.


Author(s):  
Keita Konishi ◽  
Ken Goto ◽  
Quang Tu Thieu ◽  
Rie Togashi ◽  
Hisashi Murakami ◽  
...  

2002 ◽  
Vol 742 ◽  
Author(s):  
T. Kimoto ◽  
K. Hashimoto ◽  
K. Fujihira ◽  
K. Danno ◽  
S. Nakamura ◽  
...  

ABSTRACTHomoepitaxial growth, impurity doping, and diode fabrication on 4H-SiC(11–20) and (03–38) have been investigated. Although the efficiency of nitrogen incorporation is higher on the non-standard faces than on (0001), a low background doping concentration of 2∼3×1014 cm-3 can be achieved. On these faces, boron and aluminum are less effectively incorporated, compared to the growth on off-axis (0001). 4H-SiC(11–20) epilayers are micropipe-free, as expected. More interestingly, almost perfect micropipe closing has been realized in 4H-SiC (03–38) epitaxial growth. Ni/4H-SiC(11–20) and (03–38) Schottky barrier diodes showed promising characteritics of 3.36 kV-24 mΩcm2 and 3.28 kV–22 mΩcm2, respectively. The breakdown voltage of 4H-SiC(03–38) Schottky barrier diodes was significantly improved from 1 kV to above 2.5 kV by micropipe closing.


2019 ◽  
Vol 217 (3) ◽  
pp. 1900497 ◽  
Author(s):  
Xing Lu ◽  
Xu Zhang ◽  
Huaxing Jiang ◽  
Xinbo Zou ◽  
Kei May Lau ◽  
...  

2019 ◽  
Vol 97 ◽  
pp. 101-105 ◽  
Author(s):  
Juan Wang ◽  
Dan Zhao ◽  
Wei Wang ◽  
Xiaofan Zhang ◽  
Yanfeng Wang ◽  
...  

2009 ◽  
Vol 615-617 ◽  
pp. 963-966 ◽  
Author(s):  
Taku Horii ◽  
Tomihito Miyazaki ◽  
Yu Saito ◽  
Shin Hashimoto ◽  
Tatsuya Tanabe ◽  
...  

Gallium nitride (GaN) vertical Schottky barrier diodes (SBDs) with a SiNx field plate (FP) structure on low-dislocation-density GaN substrates have been designed and fabricated. We have successfully achieved the SBD breakdown voltage (Vb) of 680V with the FP structure, in contrast to that of 400V without the FP structure. There was no difference in the forward current-voltage characteristics with a specific on-resistance (Ron) of 1.1mcm2. The figure of merit V2b/Ron of the SBD with the FP structure was 420MWcm-2. The FP structure and the high quality drift layers grown on the GaN substrates with low dislocation densities have greatly contributed to the obtained results.


1999 ◽  
Vol 572 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
S. Soloviev ◽  
T. S. Sudarshan

ABSTRACTP-type 6H SiC Schottky barrier diodes with good rectifying characteristics upto breakdown voltage as high as 1000V have been successfully fabricated using metal-overlap over a thick oxide layer (∼ 6000 Å) as edge termination and Al as the barrier metal. The influence of the oxide layer edge termination in improving the reverse breakdown voltage as well as the forward current – voltage characteristics is presented. The terminated Schottky diodes indicate a factor of two higher breakdown voltage and 2–3 times larger forward current densities than those without edge termination. The specific series resistance of the unterminated diodes was ∼228 mΩ-cm2, while that of the terminated diodes was ∼84 mΩ-cm2.


Sign in / Sign up

Export Citation Format

Share Document