scholarly journals Embryo Size Regulates the Timing and Mechanism of Pluripotent Tissue Morphogenesis

Author(s):  
Lorenzo C. Orietti ◽  
Viviane Souza Rosa ◽  
Francesco Antonica ◽  
Christos Kyprianou ◽  
William Mansfield ◽  
...  
Cell ◽  
2013 ◽  
Vol 153 (5) ◽  
pp. 976-987 ◽  
Author(s):  
Mounia Lagha ◽  
Jacques P. Bothma ◽  
Emilia Esposito ◽  
Samuel Ng ◽  
Laura Stefanik ◽  
...  

2008 ◽  
Vol 11 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Marie-Madeleine Giraud-Guille ◽  
Emmanuel Belamie ◽  
Gervaise Mosser ◽  
Christophe Helary ◽  
Frédéric Gobeaux ◽  
...  

Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 890-899 ◽  
Author(s):  
A.L.S. Guimarães ◽  
S.A. Pereira ◽  
M. N. Diógenes ◽  
M.A.N. Dode

SummaryThe aim of this study was to evaluate the effect of adding a combination of insulin, transferrin and selenium (ITS) and l-ascorbic acid (AA) during in vitro maturation (IVM) and in vitro culture (IVC) on in vitro embryo production. To verify the effect of the supplements, cleavage and blastocyst rates, embryo size and total cell number were performed. Embryonic development data, embryo size categorization and kinetics of maturation were analyzed by chi-squared test, while the total cell number was analyzed by a Kruskal–Wallis test (P < 0.05). When ITS was present during IVM, IVC or the entire culture, all treatments had a cleavage and blastocyst rates and embryo quality, similar to those of the control group (P < 0.05). Supplementation of IVM medium with ITS and AA for 12 h or 24 h showed that the last 12 h increased embryo production (51.6%; n = 220) on D7 compared with the control (39.5%; n = 213). However, no improvement was observed in blastocyst rate when less competent oocytes, obtained from 1–3 mm follicles, were exposed to ITS + AA for the last 12 h of IVM, with a blastocyst rate of 14.9% (n = 47) compared with 61.0% (n = 141) in the control group. The results suggest that the addition of ITS alone did not affect embryo production; however, when combined with AA in the last 12 h of maturation, there was improvement in the quantity and quality of embryos produced. Furthermore, the use of ITS and AA during IVM did not improve the competence of oocytes obtained from small follicles.


Development ◽  
2017 ◽  
Vol 144 (23) ◽  
pp. 4249-4260 ◽  
Author(s):  
Natalie C. Heer ◽  
Adam C. Martin
Keyword(s):  

Zygote ◽  
2011 ◽  
Vol 20 (2) ◽  
pp. 123-134 ◽  
Author(s):  
Grazieli Marinheiro Machado ◽  
Ester Siqueira Caixeta ◽  
Carolina Madeira Lucci ◽  
Rodolfo Rumpf ◽  
Maurício Machaim Franco ◽  
...  

SummaryThe objective of this study was to compare morphological characteristics, kinetics of development, and gene expression of male and female IVP embryos that were cultured until day (D)15 (fertilization = D0), using either phosphate-buffered saline (PBS) or Milli-Q water (MQW) to dilute the agarose gel used for tunnel construction. On D11, embryos (n = 286) were placed in agarose gel tunnels diluted in PBS and MQW. Embryos were evaluated for morphology, and embryo size was recorded on D11, D12.5, D14 and D15. Then, embryos were sexed and used for gene expression analyses (G6PD, GLUT1, GLUT3, PGK1, PLAC8, KRT8, HSF1 and IFNT). The percentage of elongated embryos at D15 was higher (p < 0.05) in the PBS (54%) than in the MQW (42%) gel. However, embryos produced in MQW were bigger (p < 0.05) and had a lower expression of GLUT1 (p = 0.08) than those cultured in PBS. There was a higher proportion of male than female embryos at D15 in both treatments, MQW (65% vs. 35%; p < 0.05) and PBS (67% vs. 33%; p < 0.05); however, embryo size was not significantly different between genders. Moreover, D15 female embryos had greater expression of G6PD (p = 0.05) and KRT8 (p = 0.03) than male embryos. In conclusion, the diluent used for tunnel construction affected embryo development in the post-hatching development (PHD) system, and the use of MQW was the most indicative measure for the evaluation of embryo quality. Male and female embryos cultured from D11 to D15, either in an MQW or PBS agarose gel, demonstrated similar development but different gene expression.


2020 ◽  
Vol 375 (1809) ◽  
pp. 20190551 ◽  
Author(s):  
Adam C. Martin

During tissue morphogenesis, mechanical forces are propagated across tissues, resulting in tissue shape changes. These forces in turn can influence cell behaviour, leading to a feedback process that can be described as self-organizing. Here, I discuss cytoskeletal self-organization and point to evidence that suggests its role in directing force during morphogenesis. During Drosophila mesoderm invagination, the shape of the region of cells that initiates constriction creates a mechanical pattern that in turn aligns the cytoskeleton with the axis of greatest resistance to contraction. The wild-type direction of the force controls the shape and orientation of the invaginating mesoderm. Given the ability of the actomyosin cytoskeleton to self-organize, these types of feedback mechanisms are likely to play important roles in a range of different morphogenetic events. This article is part of the discussion meeting issue ‘Contemporary morphogenesis'.


Sign in / Sign up

Export Citation Format

Share Document