scholarly journals Self-organized cytoskeletal alignment during Drosophila mesoderm invagination

2020 ◽  
Vol 375 (1809) ◽  
pp. 20190551 ◽  
Author(s):  
Adam C. Martin

During tissue morphogenesis, mechanical forces are propagated across tissues, resulting in tissue shape changes. These forces in turn can influence cell behaviour, leading to a feedback process that can be described as self-organizing. Here, I discuss cytoskeletal self-organization and point to evidence that suggests its role in directing force during morphogenesis. During Drosophila mesoderm invagination, the shape of the region of cells that initiates constriction creates a mechanical pattern that in turn aligns the cytoskeleton with the axis of greatest resistance to contraction. The wild-type direction of the force controls the shape and orientation of the invaginating mesoderm. Given the ability of the actomyosin cytoskeleton to self-organize, these types of feedback mechanisms are likely to play important roles in a range of different morphogenetic events. This article is part of the discussion meeting issue ‘Contemporary morphogenesis'.

Nature ◽  
2015 ◽  
Vol 524 (7565) ◽  
pp. 351-355 ◽  
Author(s):  
Akankshi Munjal ◽  
Jean-Marc Philippe ◽  
Edwin Munro ◽  
Thomas Lecuit

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Valente

AbstractImitating the transition from inanimate to living matter is a longstanding challenge. Artificial life has achieved computer programs that self-replicate, mutate, compete and evolve, but lacks self-organized hardwares akin to the self-assembly of the first living cells. Nonequilibrium thermodynamics has achieved lifelike self-organization in diverse physical systems, but has not yet met the open-ended evolution of living organisms. Here, I look for the emergence of an artificial-life code in a nonequilibrium physical system undergoing self-organization. I devise a toy model where the onset of self-replication of a quantum artificial organism (a chain of lambda systems) is owing to single-photon pulses added to a zero-temperature environment. I find that spontaneous mutations during self-replication are unavoidable in this model, due to rare but finite absorption of off-resonant photons. I also show that the replication probability is proportional to the absorbed work from the photon, thereby fulfilling a dissipative adaptation (a thermodynamic mechanism underlying lifelike self-organization). These results hint at self-replication as the scenario where dissipative adaptation (pointing towards convergence) coexists with open-ended evolution (pointing towards divergence).


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Pedro E. S. Silva ◽  
Ricardo Chagas ◽  
Susete N. Fernandes ◽  
Pawel Pieranski ◽  
Robin L. B. Selinger ◽  
...  

AbstractCellulose-based systems are useful for many applications. However, the issue of self-organization under non-equilibrium conditions, which is ubiquitous in living matter, has scarcely been addressed in cellulose-based materials. Here, we show that quasi-2D preparations of a lyotropic cellulose-based cholesteric mesophase display travelling colourful patterns, which are generated by a chemical reaction-diffusion mechanism being simultaneous with the evaporation of solvents at the boundaries. These patterns involve spatial and temporal variation in the amplitude and sign of the helix´s pitch. We propose a simple model, based on a reaction-diffusion mechanism, which simulates the observed spatiotemporal colour behaviour.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Andrey Dmitriev ◽  
Victor Dmitriev ◽  
Stepan Balybin

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network. The model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.


2014 ◽  
Vol 5 ◽  
pp. 1203-1209 ◽  
Author(s):  
Hind Kadiri ◽  
Serguei Kostcheev ◽  
Daniel Turover ◽  
Rafael Salas-Montiel ◽  
Komla Nomenyo ◽  
...  

Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.


2018 ◽  
Vol 5 (4) ◽  
pp. 110 ◽  
Author(s):  
Kazusa Beppu ◽  
Ziane Izri ◽  
Yusuke Maeda ◽  
Ryota Sakamoto

As expressed “God made the bulk; the surface was invented by the devil” by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.


2021 ◽  
Vol 118 (21) ◽  
pp. e2016904118
Author(s):  
Derek K. Cheng ◽  
Tobiloba E. Oni ◽  
Jennifer S. Thalappillil ◽  
Youngkyu Park ◽  
Hsiu-Chi Ting ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.


1970 ◽  
pp. 118
Author(s):  
Palle Torsson

I am a member of the hackerspace Sparvnästet, a self-organized group of people who explore, play, and tinker with technology. This text is my personal and subjective understanding of the joint effort of Sparvnästet and The National Museum of Science and Technology (Tekniska Museet) to organize a “hacknight,” a weekend hacker and maker conference at the museum. 


Sign in / Sign up

Export Citation Format

Share Document