scholarly journals Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems

2022 ◽  
Vol 215 ◽  
pp. 105191
Author(s):  
Sékou F.M. Coulibaly ◽  
Michaël Aubert ◽  
Nicolas Brunet ◽  
Fabrice Bureau ◽  
Marc Legras ◽  
...  
2014 ◽  
Vol 191 ◽  
pp. 108-116 ◽  
Author(s):  
Priit Tammeorg ◽  
Asko Simojoki ◽  
Pirjo Mäkelä ◽  
Frederick L. Stoddard ◽  
Laura Alakukku ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 3273 ◽  
Author(s):  
Shokoofeh Khorami ◽  
Seyed Kazemeini ◽  
Sadegh Afzalinia ◽  
Mahesh Gathala

Natural resources are the most limiting factors for sustainable agriculture in Iran. Traditional practices are intensive tillage that leads to a negative impact on crop productivity and soil properties. Conservation agriculture including tillage reductions, better agronomy, and improved varieties, showed encouraging results. The goal of this study was to test combined effect of tillage practices and wheat (Triticum aestivum L.) genotypes on soil properties as well as crop and water productivity. The experiment was conducted at Zarghan, Fars, Iran during 2014–2016. Experimental treatments were three-tillage practices—conventional tillage (CT), reduced tillage (RT), and no tillage (NT)—and four wheat genotypes were randomized in the main and subplots, respectively using split-plot randomized complete block design with three replications. Results showed NT had higher soil bulk density at surface soil, thereby lower cumulative water infiltration. The lowest soil organic carbon and total nitrogen were obtained under CT that led to the highest C:N ratio. Reduced tillage produced higher wheat yield and maize (Zea mays L.) biomass. Maximum irrigation water was applied under CT, which leads lower water productivity. The findings are based on short-term results, but it is important to evaluate medium- and long-term effects on soil properties, crop yields and water use in future.


Author(s):  
Bruno Gianmarco Carra ◽  
Giuseppe Bombino ◽  
Manuel Esteban Lucas-Borja ◽  
Adele Muscolo ◽  
Federico Romeo ◽  
...  

2019 ◽  
Vol 194 ◽  
pp. 104316 ◽  
Author(s):  
Daiane dos Santos Soares ◽  
Maria Lucrecia Gerosa Ramos ◽  
Robélio Leandro Marchão ◽  
Giovana Alcântara Maciel ◽  
Alexsandra Duarte de Oliveira ◽  
...  

Soil Research ◽  
2019 ◽  
Vol 57 (7) ◽  
pp. 738 ◽  
Author(s):  
D. E. Allen ◽  
P. M. Bloesch ◽  
T. G. Orton ◽  
B. L. Schroeder ◽  
D. M. Skocaj ◽  
...  

We explored soil properties as indices of mineralisable nitrogen (N) in sugarcane soils and whether we could increase the accuracy of predicting N mineralisation during laboratory incubations. Utilising historical data in combination with samples collected during 2016, we: (i) measured mineralised N over the course of short-term (14 days) and long-term (301 days) laboratory incubations; (ii) compared models representing mineralisation; then (iii) related model parameters to measured soil properties. We found measures representing the labile organic N pool (Hydrolysable NaOH organic N; amino sugar Illinois soil N test) best related to short-term mineralised N (R2 of 0.50–0.57, P < 0.001), while measures of CO2 production (3, 7, 10 and 14 days) best related to longer-term mineralised N (R2 of 0.75–0.84, P < 0.001). Indices were brought together to model the active and slow pools of a two-pool mineralisation model in the statistical framework of a mixed-effects model. Of the models that relied on measurement of one soil property, cumulative CO2 production (7 days) performed the best when considering all soil types; in a cross-validation test, this model gave an external R2 of 0.77 for prediction of the 301-day mineralised N. Since the mixed-effects model accounts for the various sources of uncertainty, we suggest this approach as a framework for prediction of in-field available N, with further measurement of long-term mineralised N in other soils to strengthen predictive certainty of these soil indices.


Sign in / Sign up

Export Citation Format

Share Document