scholarly journals Changes in Soil Properties and Productivity under Different Tillage Practices and Wheat Genotypes: A Short-Term Study in Iran

2018 ◽  
Vol 10 (9) ◽  
pp. 3273 ◽  
Author(s):  
Shokoofeh Khorami ◽  
Seyed Kazemeini ◽  
Sadegh Afzalinia ◽  
Mahesh Gathala

Natural resources are the most limiting factors for sustainable agriculture in Iran. Traditional practices are intensive tillage that leads to a negative impact on crop productivity and soil properties. Conservation agriculture including tillage reductions, better agronomy, and improved varieties, showed encouraging results. The goal of this study was to test combined effect of tillage practices and wheat (Triticum aestivum L.) genotypes on soil properties as well as crop and water productivity. The experiment was conducted at Zarghan, Fars, Iran during 2014–2016. Experimental treatments were three-tillage practices—conventional tillage (CT), reduced tillage (RT), and no tillage (NT)—and four wheat genotypes were randomized in the main and subplots, respectively using split-plot randomized complete block design with three replications. Results showed NT had higher soil bulk density at surface soil, thereby lower cumulative water infiltration. The lowest soil organic carbon and total nitrogen were obtained under CT that led to the highest C:N ratio. Reduced tillage produced higher wheat yield and maize (Zea mays L.) biomass. Maximum irrigation water was applied under CT, which leads lower water productivity. The findings are based on short-term results, but it is important to evaluate medium- and long-term effects on soil properties, crop yields and water use in future.

2014 ◽  
Vol 191 ◽  
pp. 108-116 ◽  
Author(s):  
Priit Tammeorg ◽  
Asko Simojoki ◽  
Pirjo Mäkelä ◽  
Frederick L. Stoddard ◽  
Laura Alakukku ◽  
...  

2017 ◽  
Vol 9 (3) ◽  
pp. 1540-1543 ◽  
Author(s):  
Neema Bisht ◽  
V. K. Sah ◽  
Kavita Satyawali ◽  
Salil Tiwari

Field experiment was conducted during the Rabi season of 2013-14 on an established plantation at old site of Agroforestry Research Centre, Patharchatta of G.B. Pant University of Agriculture and Technology, Pantna-gar, District Udham Singh Nagar, Uttarakhand, India to evaluate the effect of poplar based agroforestry system and open system (without poplar) on yield of different wheat varieties and soil physico-chemical properties.The experi-ment was laid out in randomized block design with 4 treatments and each replicated thrice under both the growing conditions. The crop treatments are wheat varieties viz. UP-2572, PBW-550, DBW-711 and PBW-373. The highest grain yield of all the wheat varieties was obtained under open farming system. Highest grain yield of wheat was rec-orded in UP-2572 (45.3 q/ha) under open farming system. Agroforestry is proven land use system for vertically en-hancing soil health against unsuitable weather condition. The distribution of soil properties was detected from the depth 0-15 cm in poplar based agroforestry system and as well as in open system. During the experiment it was found that agroforestry add more nutrients to the soil compared to open system i.e. highest pH (7.9), EC (0.43 dSm-1), available soil nitrogen (253.48 kg/ha), potassium (219.63 kg/ha) were achieved with UP-2572 while organic car-bon (1.07%) and available soil phosphorus (22.72 kg/ha) were attained with DBW-711.


1997 ◽  
Vol 12 (3) ◽  
pp. 105-109 ◽  
Author(s):  
A. Yahyaoui ◽  
K. M'Hedhbi ◽  
S. Rezgui

AbstractThe semiarid regions (SARs) are characterized by extreme temperature changes, low and unevenly distributed precipitation, hazardous torrential rains, and frequent early spring droughts. Barley is the most highly adapted cereal in SARs, but durum wheat is the most widely cultivated. The area in cereals varies considerably from year to year, and yields are low. Tillage practices are used to conserve both soil and moisture and to prepare the seed bed. However, improved fertilizer use and weed control practices are not being used. Without development of needed cultural and tillage practice systems, the genetic potential of today's varieties cannot be realized. Planting depth and rate, row spacing, fertilizer application, and weed control were investigated under conventional tillage and reduced tillage systems. In on-farm trials, reduced tillage did not significantly affect durum wheat yield but slightly increased barley yield compared with traditional practices. Optimum planting depth for both wheat and barley was 7 cm. Higher seeding rates increased the yield of both crops. Highest yields were obtained at planting rates of 140 kg/ha for wheat and 100 kg/ha for barley. At these rates, maximum yields were achieved at row spacings of 30 cm for barley and 20 cm for durum wheat. Use of fertilizer and weed control increased yields substantially. Sustained and increased production in SARs can be achieved with a “package of practices” approach that incorporates these cultural and tillage practices.


2011 ◽  
Vol 91 (6) ◽  
pp. 985-995 ◽  
Author(s):  
Ron Beyaert ◽  
R. Paul Voroney

Beyaert, R. P. and Voroney, R. P. 2011. Estimation of decay constants for crops residues measured over 15 years in conventional and reduced tillage systems in a coarse-textured soil in southern Ontario. Can. J. Soil Sci. 91: 985–995. Crop residues are the primary means of sustaining soil organic matter levels in agricultural soils. This study was undertaken to determine the effects of tillage practices on the rate of decomposition of crop residues over a 15-yr period under field conditions in southern Ontario. Microplots were amended with14C-labelled above-ground residues of five annual agricultural crops: corn (Zea mays L.), soybean (Glycine max L.), winter wheat (Triticum aestivum L.), winter rye (Secale cereale L.) and tobacco (Nicotiana tobaccum L.). The crop residues were added to the soil immediately following harvest during the 1990 growing season using a simulated conventional mouldboard plough–disc management (CT) or conservation tillage management (RT), and the amounts of crop residues remaining were measured periodically. The rate of decomposition of the labile C was positively correlated to the levels of hot-water soluble C and N content and negatively correlated to the C:N ratio and hemicellulose concentration of the residues. Decomposition of the residue C was greater under CT during the initial phase of decomposition, indicating that the incorporated residues were exposed to a more favourable environment for microbial activity compared with surface-applied residues. Kinetic analysis of residue decomposition showed that residues managed under CT had a larger labile component and faster rate of decomposition and a smaller resistant component with a slower decomposition rate than RT. Comparisons of models describing the decomposition of combined crops/tillage practices did not describe the decomposition process as well as models for individual crop/tillage combinations.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 768-774 ◽  
Author(s):  
Krishna N. Reddy ◽  
Martin A. Locke ◽  
Clifford H. Koger ◽  
Robert M. Zablotowicz ◽  
L. Jason Krutz

A 6-yr rotation study was conducted from 2000 to 2005 at Stoneville, MS to examine the effects of rotating glyphosate-resistant (GR) and non-GR (conventional) cultivars of cotton with corn under reduced tillage conditions on soil properties, weed control, crop yield, and net return. There were four rotation systems (continuous cotton, continuous corn, cotton–corn, and corn–cotton) for each non-GR and GR cultivar arranged in a randomized complete block design with four replications. Field preparation consisted of disking, subsoiling, disking, and bedding in the fall of 1999. After the fall of 2000, the experimental area received no tillage operations except rebedding after harvest each year to maintain reduced tillage conditions. A glyphosate-based program in GR cultivars and a nonglyphosate-based program in non-GR cultivars were used for weed management. Soil organic carbon in the top 5-cm depth progressively increased from the first year to the sixth year, regardless of rotation. In 2005, organic carbon was higher in corn grown continuously and in rotation compared to continuous cotton, partly due to higher plant residues from corn compared to cotton. Control of most grass and broadleaf weeds was sufficient to support cotton and corn production, regardless of rotation and herbicide program. Control of yellow nutsedge was reduced in continuous non-GR cotton; this apparent weed species shift toward yellow nutsedge was mitigated by breaking the cotton monocrop with corn. Plant populations of both GR and non-GR cotton rotated with corn were similar to that of continuous cotton suggesting cotton stand establishment was not affected by corn residues from the previous year. Cotton yield increased every year following rotation with corn by 10–32% in the non-GR cultivar, and by 14–19% in the GR cultivar compared to continuous cotton. Similarly, corn yield increased by 5–13% in non-GR cultivar and by 1–11% in the GR cultivar when rotated with cotton. As a result, net returns were higher from rotation management as compared with monoculture in both crops. This study demonstrated that alternating between cotton and corn is agronomically feasible and a sustainable option for farmers in the lower Mississippi River alluvial flood plain region who are looking for simple cultural practices that provide economic and environmental benefits.


2015 ◽  
Vol 4 (2) ◽  
pp. 57 ◽  
Author(s):  
Robert Mulebeke ◽  
Geoffrey Kironchi ◽  
Moses M. Tenywa

<p>A remarkable challenge lies in maximizing agricultural water productivity, particularly in the drought prone regions of sub Saharan Africa. It is hypothesized that water use efficiency (WUE) can be increased by selection of appropriate cropping management systems. This study seeks to establish the effects of cropping management on water use efficiency in cassava-sorghum cropping systems in the drylands of eastern Uganda. A randomised complete block design (RCBD) consisting of six treatments: sole cassava, sole sorghum, sole cowpea, cassava + sorghum, cassava + cowpea, and sorghum + cowpea, replicated three times were used. Two tillage practices; mouldboard ploughing (Mb) and, ripping (Rp) were used to assess the effect of tillage. WUE (kg ha<sup>-1</sup> mm<sup>-1</sup>) was calculated as a ratio of yield (kg ha<sup>-1</sup>) to evapotranspiration (ET) (mm). ET was estimated using the soil water balance. WUE varied significantly (?= 0.05) between cropping systems with the highest observed in cassava (34.38 kg ha<sup>-1</sup> mm<sup>-1</sup>) while the lowest was 3.76 kg ha<sup>-1</sup> mm<sup>-1</sup> for sorghum. WUE did not differ appreciably in both Mb and Rp tillage practices. Farmers growing sole cassava could use either of the tillage practices. The best yield was recorded in cassava + cowpea cropping system under Mb ploughing and sole sorghum under Rp gave the poorest combined yield (1,676 kg ha<sup>-1</sup>). <strong></strong></p>


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 302
Author(s):  
Morad Mirzaei ◽  
Manouchehr Gorji Anari ◽  
Ehsan Razavy-Toosi ◽  
Hossein Asadi ◽  
Ebrahim Moghiseh ◽  
...  

Strategic management of crop residues is essential to enhance soil quality for sustainable agriculture. However, little is known about the specific amounts of crop residues needed to improve soil quality characteristics which are key to develop economic plans. In this study, we investigated the effects of applying crop residue at five rates, including 100% (R100), 75% (R75), 50% (R50), 25% (R25), and 0% (R0), on wheat yield and soil properties. Field experiments were conducted for two cropping seasons in a wheat-corn rotation under conventional (CT) and no-till (NT) systems to observe the first results obtained during short-term periods (one-year application). During the study, the wheat and corn fields were irrigated. Application of plant residue resulted in increased soil organic carbon (SOC) and available nutrients and improved soil physical properties, i.e., aggregates mean weight diameter in wet (MWDw) and dry (MWDd) conditions, water-stable aggregates (WSA), dry-stable aggregates, (DSA), soil water infiltration (SWI), soil available water (SAW), and yield of wheat and corn. The effects were stronger at higher residue application rates. In the CT system, compared to R0, R100 resulted in the highest increase equal to 38, 29, 23, 34, 35, 41, and 11% for SOC, MWDw, MWDd, WSA, DSA, SAW, and wheat grain yield, respectively. This was equivalent to 28, 19.5, 19, 37, 44, 52, and 6% for the NT system, respectively. Generally, the NT system resulted in a stratification of the soil properties within 0–10 cm compared to 10–20 cm soil depth, but a uniform distribution for both depths under CT system. Overall, these results show that crop residue application can improve soil quality and yield in cereal production systems under semi-arid conditions during the first year of application. It will be key to monitor these changes in along-term field studies.


2016 ◽  
Vol 155 (2) ◽  
pp. 216-238 ◽  
Author(s):  
MD. KHAIRUL ALAM ◽  
N. SALAHIN ◽  
S. ISLAM ◽  
R. A. BEGUM ◽  
M. HASANUZZAMAN ◽  
...  

SUMMARYConservation agriculture (CA) is inadequately developed for rice-based cropping systems widely practiced in Bangladesh. The current drawback is the implementation of CA for all crops including rice (Oryza sativaL., ecotype ‘transplanted aman’ [T. aman]) to increase rice–wheat (Triticum aestivumL.) rotation productivity. It is important to identify the best combination of tillage types and cropping systems to achieve a high yield of component crops and improve soil health. Three tillage practices, assigned to main experimental plots [namely, zero tillage (ZT), conventional tillage using a rotary tiller (CT) and deep tillage using a chisel plough (DT)] and three different cropping systems, assigned to sub-plots [namely, WFT: wheat–fallow–T. aman, WMT: wheat–mungbean (Vigna radiataL. Wilczek)–T. aman and WDT: wheat–dhaincha (Sesbania rostrata)–T. aman], were tested. After 4 years, ZT under WDT and WMT significantly increased soil organic matter (SOM) at 0–150 mm depth, and these replicates also held the highest levels of total organic carbon. Soil organic carbon (C) increased at a rate of 1.17 and 1.14 t/ha/y in ZT under WDT and WMT, respectively, while CT and DT under WFT were almost unchanged. After 4 years, SOM build-up by the three-crop system (WDT and WMT) under ZT helped conserve soil moisture and improve other soil properties, such as reduction in soil strength and bulk density and increase plant available water content, thus maintaining an optimum soil water infiltration rate. Zero tillage under WMT and WDT showed significant improvements in root mass density of rice and wheat at increased soil depth. The WDT and WMT plots under DT consistently gave the highest yield followed by WDT and WMT under CT, in contrast with ZT under WMT or WDT, which showed the highest improvement in crop yields over the years. In summary, minimum soil disturbance together with incorporation of a legume/green manure crop into the rice–wheat system as well as the retention of their residues increased soil C status, improved soil properties and maximized grain yields.


2020 ◽  
pp. 17-23

The experiment was undertaken using cassava (Manihot spp) to evaluate effects of different tillage practices and mulching (raised mulched bed, raised not mulched bed, flat mulched bed, flat not mulched bed, untilled mulched bed and untilled not mulched bed) on soil properties and cassava sprouting and yield in 2016 and 2017 planting seasons on a Typic psamment in Ikwo, Ebonyi State, Southeastern Nigeria. The experimental study is made up of six treatments, arranged in randomized complete block design and replicated four times. The results indicated significantly (P<0.05) higher (28.18 – 27.16%) GMC in beds mulched than corresponding values (17.10 – 15.26% and 16.20 – 15.10%) obtained in untilled mulched and untilled not mulched beds for both seasons. Results showed that available P, N, Ca and Mg were respectively higher (P<0.05) in mulched raised beds when compared to those of untilled mulched or untilled not mulched beds by 31 – 28%, 32 – 71%, 50 – 33%, 50 – 30%, 89 – 67% and 49 – 26%, 91–71%. At 28 DAP for 2016 and 2017 planting seasons results showed that 90–78% of the planted cassava cuttings sprouted between 14 – 17 days earlier in both tilled mulched beds and tilled not mulched beds compared to untilled mulched or untilled not mulched beds (5 – 48%). These were (P<0.05) 40 – 50% and 47–37% significantly higher in tilled mulched and tilled not mulched beds when compared to untilled mulched and untilled not mulched beds. At harvest (300 DAP), highest cassava tuber yield (7.5–7.3t ha-1 ) were obtained in raised mulched beds for 2016 and 2017. Cassava yields were (p<0.05) higher in raised mulched beds by 60 and 59% compared to their counterparts in untilled not mulched beds for the seasons. These findings imply that rice mill wastes mulch provide a good and conducive soil condition for cassava than unmulched or untilled environment and raised mulched beds provide more robust condition for cassava production relative to other treatments tested in this study


Sign in / Sign up

Export Citation Format

Share Document