High temperature tribological behavior of W containing diamond-like carbon (DLC) coating against titanium alloys

2014 ◽  
Vol 241 ◽  
pp. 93-104 ◽  
Author(s):  
A. Banerji ◽  
S. Bhowmick ◽  
A.T. Alpas
2021 ◽  
Vol 2059 (1) ◽  
pp. 012004
Author(s):  
I A Buyanovskii ◽  
M M Khrushchov ◽  
V D Samusenko ◽  
M V Atamanov ◽  
Yu I Shcherbakov

Abstract The results have been presented of an experimental study of the tribological behavior of diamond-like carbon coatings (DLC) doped with chromium and molybdenum obtained by reactive magnetron sputtering. The effect of alloying with these metals on the tribological characteristics of boundary lubrication of a DLC coating/steel contact has been studied for the case of three model lubricants (inactive, surfactant, and chemically active). It has been shown that doping with chromium and molybdenum improves both the tribological characteristics of coatings under dry friction and the lubricating properties of the model oils, while alloying with molybdenum provides lower coefficients of friction and less wear at dry and boundary friction than alloying with chromium.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 376
Author(s):  
Mao Kaneko ◽  
Masanori Hiratsuka ◽  
Ali Alanazi ◽  
Hideki Nakamori ◽  
Kazushige Namiki ◽  
...  

We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.


2021 ◽  
pp. 1-10
Author(s):  
Gopa Chakraborty ◽  
Revati Rani ◽  
R. Ramaseshan ◽  
M. Arvinth Davinci ◽  
C. R. Das ◽  
...  

2011 ◽  
Vol 80-81 ◽  
pp. 60-63
Author(s):  
Xue Qing Yue ◽  
Hua Wang ◽  
Shu Ying Wang

Incorporation of metallic elements, titanium and copper, into carbonaceous mesophase (CM) was performed through mechanical alloying in a ball mill apparatus. The structures of the raw CM as well as the Ti/Cu-added CM were characterized by X-ray diffraction. The tribological behavior of the Ti/Cu-added CM used as lubricating additives was investigated by using a high temperature friction and wear tester. The results show that, compared with the raw CM, the Ti/Cu-added CM exhibits a drop in the crystallinity and a transition to the amorphous. The Ti/Cu-added CM used as lubricating additive displays an obvious high temperature anti-friction and wear resistance effect, and the lager the applied load, the lower the friction coefficient and the wear severity.


2009 ◽  
Vol 42 (2) ◽  
pp. 229-235 ◽  
Author(s):  
Boris Kržan ◽  
Franz Novotny-Farkas ◽  
Jože Vižintin

Sign in / Sign up

Export Citation Format

Share Document