Electrochemically synthesized silver phosphate coating on anodized aluminum with superior antibacterial properties

Author(s):  
Henry Agbe ◽  
Dilip Kumar Sarkar ◽  
X. Grant Chen
Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Massimo Calovi ◽  
Berenice Furlan ◽  
Valentina Coroneo ◽  
Orietta Massidda ◽  
Stefano Rossi

The emergence and spreading of the SARS-CoV-2 pandemic has forced the focus of attention on a significant issue: the realization of antimicrobial surfaces for public spaces, which do not require extensive use of disinfectants. Silver represents one of the most used elements in this context, thanks to its excellent biocidal performance. This work describes a simple method for the realization of anodized aluminum layers, whose antimicrobial features are ensured by the co-deposition with silver nitrate. The durability and the chemical resistance of the samples were evaluated by means of several accelerated degradation tests, such as the exposure in a salt spray chamber, the contact with synthetic sweat and the scrub test, highlighting the residual influence of silver in altering the protective behavior of the alumina layers. Furthermore, the ISO 22196:2011 standard was used as the reference protocol to set up an assay to measure the effective antibacterial activity of the alumina-Ag layers against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, even at low concentrations of silver. Finally, the Ag-containing aluminum oxide layers exhibited excellent antimicrobial performances also following the chemical–physical degradation processes, ensuring good durability over time of the antimicrobial surfaces. Overall, this work introduces a simple route for the realization of anodized aluminum surfaces with excellent antibacterial properties.


2014 ◽  
Vol 804 ◽  
pp. 231-234
Author(s):  
Jian Wang ◽  
Ming Hui Zhao ◽  
Yu Bao Li ◽  
Yi Zuo ◽  
Bin Sun ◽  
...  

Elimination of microorganisms from the root canal system and the prevention of subsequent reinfection are of importance for long-term endodontic treatment. The application of a sealer with antibacterial properties may reduce the reinfection and improve the success rate of the root filling treatment. The aim of this paper is to evaluate the antibacterial properties of a novel root canal sealer based on injectable self-curing polyurethane with silver phosphate (PU/Ag3PO4). The antibacterial abilities were assessed by direct contact test, anti-bacterial adhesion assay and bacteriostatic rate test. The results show that the fabricated PU/Ag3PO4sealer can completely inhibit the bacterial growth and prevent bacterial adhension effectively. The bacteriostatic rate is 93.6% and 98.1% when the bacteria incubated with PU/Ag3PO4 sealer for 7 and 24h respectively. The strong antibacterial abilities suggest that PU/Ag3PO4 sealer has great application potential in the field of root canal filling.Key words: Root canal sealer, polyurethane, silver phosphate, antibacterial properties, direct contact test


MRS Advances ◽  
2016 ◽  
Vol 2 (24) ◽  
pp. 1285-1290
Author(s):  
Hiroaki Igashira ◽  
Michimasa Kamo ◽  
Masayuki Kyomoto ◽  
Toshiyuki Ikoma

ABSTRACTThe antibacterial properties are useful to restrain inflammatory response caused by bacterial infection after implantation. The composites of hydroxyapatite (HAp) and silver nano-dots, silver oxide or silver phosphate have been investigated; however there are still some disadvantage in sintering; 1) silver nano-dots grow large, and are not homogenously distributed, 2) silver nano-dots melt and remove, and 3) silver phosphate and silver oxide formed exhibit higher solubility than metal silver. In this study, the distribution of silver nano-dots in HAp microparticles sintered was controlled at grain boundary with a modified silver mirror reaction as a novel route. HAp microparticles adsorbed formaldehyde by a vapor deposition method were soaked in an ammoniacal silver nitrate solution and were then sintered. There was a single phase of HAp including metal silver at 6.4 wt% even after sintering. The silver nano-dots were homogeneously distributed inside the microparticles. The release profiles of silver ions in phosphate buffer saline were compared with a reference; the HAp microparticles were soaked into silver nitrate solution and were then sintered. The distribution of silver in the reference was not homogeneous and large silver microparticles were grown outside the particles at 6.3wt%. The elution amount of silver ions from the microparticles at 12 hours was one-eighteenth of that from the reference. These results suggest that the HAp microparticles including silver nano-dots at grain boundary will be suitable for a long-term antibacterial material.


2020 ◽  
Vol 3 (7) ◽  
pp. 4062-4073
Author(s):  
Henry Agbe ◽  
Dilip Kumar Sarkar ◽  
X.-Grant Chen ◽  
Nathalie Faucheux ◽  
Gervais Soucy ◽  
...  

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 1944-1949
Author(s):  
Hirotaka Sakaue ◽  
John P. Sullivan

Author(s):  
Azadeh Foroughi ◽  
Pouya Pournaghi ◽  
Fariba Najafi ◽  
Akram Zangeneh ◽  
Mohammad Mahdi Zangeneh ◽  
...  

Medicinal plants are considered modern resources for producing agents that could act as alternatives to antibiotics in demeanor of antibiotic-resistant bacteria. The aim of the study was to evaluate the chemical composition and antibacterial activities of essential oil of Foeniculum vulgare (FV) against Pseudomonas aeruginosa and Bacillus subtilis. Gas chromatography mass spectrometry was done to specify chemical composion. As a screen test to detect antibacterial properties of the essential oil, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to determinate MIC. The results indicated that the most substance found in FV essential oil was Trans-anethole (47.41 %), also the essential oil of FV with 0.007 g/ml concentration has prevented P. aeruginosa and with 0.002 g/ml concentration has prevented B. subtilis from the growth. Thus, the research represents the antibacterial effects of the medical herb on test P. aeruginosa and B. subtilis. We believe that the article provide support to the antibacterial properties of the essential oil. The results indicate the fact that the essential oil from the plant can be useful as medicinal or preservatives composition.


Sign in / Sign up

Export Citation Format

Share Document