Structural analysis of Ge(111)–3×3-Sn surface at low-temperature by reflection high-energy positron diffraction

2006 ◽  
Vol 600 (18) ◽  
pp. 4086-4088 ◽  
Author(s):  
Y. Fukaya ◽  
A. Kawasuso ◽  
A. Ichimiya
Author(s):  
Patrick Echlin

The unusual title of this short paper and its accompanying tutorial is deliberate, because the intent is to investigate the effectiveness of low temperature microscopy and analysis as one of the more significant elements of the less interventionist procedures we can use to prepare, examine and analyse hydrated and organic materials in high energy beam instruments. The promises offered by all these procedures are well rehearsed and the litany of petitions and responses may be enunciated in the following mantra.Vitrified water can form the perfect embedding medium for bio-organic samples.Frozen samples provide an important, but not exclusive, milieu for the in situ sub-cellular analysis of the dissolved ions and electrolytes whose activities are central to living processes.The rapid conversion of liquids to solids provides a means of arresting dynamic processes and permits resolution of the time resolved interactions between water and suspended and dissolved materials.The low temperature environment necessary for cryomicroscopy and analysis, diminish, but alas do not prevent, the deleterious side effects of ionizing radiation.Sample contamination is virtually eliminated.


RSC Advances ◽  
2014 ◽  
Vol 4 (73) ◽  
pp. 38718-38725 ◽  
Author(s):  
Fengyuan Lu ◽  
Tiankai Yao ◽  
Jinling Xu ◽  
Jingxian Wang ◽  
Spencer Scott ◽  
...  

High energy ball milled iodoapatite in the form of an amorphous matrix embedded with nanocrystals can be readily crystallized by subsequent low temperature thermal annealing, which greatly improves the thermal stability and iodine confinement.


2011 ◽  
Vol 178-179 ◽  
pp. 421-426
Author(s):  
Jan Vobecký ◽  
Volodymyr Komarnitskyy ◽  
Vít Záhlava ◽  
Pavel Hazdra

Low-temperature diffusion of Cr, Mo, Ni, Pd, Pt, and V in silicon diodes is compared in the range 450 - 800 oC. Before the diffusion, the diodes were implanted with high-energy He2+ to assess, if the radiation defects enhance the concentration of metal atoms at electrically active sites and what is the application potential for carrier lifetime control. The devices were characterized using AES, XPS, DLTS, OCVD carrier lifetime and diode electrical parameters. The metal atoms are divided into two groups. The Pt, Pd and V form deep levels in increased extent at the presence of radiation defects above 600 oC, which reduces the excess carrier lifetime. It is shown as a special case that the co-diffusion of Ni and V from a NiV surface layer results fully in the concentration enhancement of the V atoms. The enhancement of the acceptor level V-/0 (EC 0.203 eV) and donor level V0/+ (EC 0.442 eV) resembles the behavior of substitutional Pts. The second group is represented by the Mo and Cr. They easily form oxides, which can make their diffusion into a bulk more difficult or impossible. Only a slight enhancement of the Cr-related deep levels by the radiation defects has been found above 700 oC.


2001 ◽  
Vol 7 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Patrick Echlin

Abstract A brief description is given of the events surrounding the development of biological X-ray microanalysis during the last 30 years, with particular emphasis on the contribution made by research workers in Cambridge, UK. There then follows a broad review of some applications of biological X-ray microanalysis. A more detailed consideration is given to the main thrust of current procedures and applications that are, for convenience, considered as four different kinds of samples. Thin frozen dried sections which are analyzed at ambient temperatures in a transmission electron microscope (TEM); semithin frozen dried sections which are analyzed at low temperature in a scanning transmission electron microscope (STEM); thick frozen hydrated sections which are analyzed at low temperature in a scanning electron microscope (SEM), and bulk samples which are analyzed at low temperature in the same type of instrument. A brief outline is given of the advantages and disadvantages of performing low-voltage, low-temperature X-ray microanalysis on frozen hydrated bulk biological material. The article concludes with a consideration of alternative approaches to in situ analysis using either high-energy beams or visible and near-visible photons.


2011 ◽  
Vol 56 (4) ◽  
pp. 1015-1020 ◽  
Author(s):  
D. Bochenek ◽  
G. Dercz ◽  
D. Oleszak

Application of Mechanical Activation in Synthesizing Multiferroic Pb(Fe1/2Nb1/2)O3 Powders In the study, the method of high-energy powder milling - mechanical activation (MA) was used for synthesizing Pb(Fe1/2Nb1/2)O3 (PFN) powders. For the purpose of comparing the influence of high-energy milling on PFN synthesis, two groups of powder samples were used. The first mixture consisting of simple oxide powders; the second one consisting of compound oxide powders. The obtained powders were subjected to structural analysis with the use of XRD and Mőssbauer spectroscopy. Tests revealed that during the process of high-energy milling of initial constituents a partial synthesis of PFN material phases occurs. By comparing the two methods of PFN synthesizing it may be stated that mechanical activation in the case of a simple oxide mixture (PFN1) is equally effective as for a compound oxide mixture (PFN2).


Sign in / Sign up

Export Citation Format

Share Document