Effect of alkyl ketene dimer on chemical and thermal properties of polylactic acid (PLA) hybrid composites

Author(s):  
Naile Angin ◽  
Sena Caylak ◽  
Murat Ertas ◽  
Ayfer Donmez Cavdar
2021 ◽  
pp. 1-11
Author(s):  
Vinayagam Mohanavel ◽  
Thandavamoorthy Raja ◽  
Anshul Yadav ◽  
Manickam Ravichandran ◽  
Jerzy Winczek

2021 ◽  
pp. 107-134
Author(s):  
Bheemappa Suresha ◽  
Rajashekaraiah Hemanth ◽  
Gurumurthy Hemanth

2015 ◽  
Vol 754-755 ◽  
pp. 71-76
Author(s):  
Mohd Firdaus Omar ◽  
Lu Yew Wei ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin

In this work, UHMWPE reinforced composites containing hybrid zinc oxide (ZnO) and chitosan particles were prepared via the hot compression technique. The effect of ZnO contents (10, 20, 30 wt.%) and chitosan contents (1, 2, 3 wt.%) on the thermal properties of UHMWPE/ZnO and UHMWPE/Chitosan-ZnO reinforced composites were successfully investigated using DSC and TGA analysis, respectively. Based on DSC results, both UHMWPE/ZnO and hybrid composites did not record significant changes in the melting temperatures (Tm). The heat fusion enthalpy (Hm) and degree of crystallinity (Xc) of hybrid composites were found to be higher than UHMWPE/ZnO composites. As the TGA results shown, hybrid composites were also found to have higher thermal stability than UHMWPE/ZnO composites at 10 % and 50 % weight loss level. Overall, the UHMWPE/ZnO + 3 wt.% Chitosan hybrid reinforced composite recorded comparable mechanical properties and better thermal properties than neat UHMWPE.


2018 ◽  
Vol 31 (6) ◽  
pp. 719-732 ◽  
Author(s):  
Abdeldjalil Zegaoui ◽  
Mehdi Derradji ◽  
Abdul Qadeer Dayo ◽  
Aboubakr Medjahed ◽  
Hui-yan Zhang ◽  
...  

The investigation and design of new polymeric materials with an astonishing combination of properties are nowadays of great importance to facilitate the manufacturing process of high-quality products intended to be utilized in different applications and technical fields. For this intent, novel high-performance blend composites composed of the cyanate ester/benzoxazine resin blend reinforced by different proportions of silane-surface modified Kevlar and glass fibers were successfully fabricated by a compression molding technique and characterized by different experimental tests. The mechanical test results revealed that the bending and impact strength properties were considerably improved when increasing the amount of the hybrid fibers. The studied materials also presented excellent thermal stabilities as compared to the unfilled blend’s properties. With respect to the properties of the reinforcing systems, these improvements seen in either the mechanical or thermal properties could be due to the good dispersion as well as excellent adhesion of the reinforcing fibers inside the resin matrix, which were further evidenced by the Fourier transform infrared spectroscopy and scanning electron microscopy results. Consequently, the improved mechanical and thermal properties promote the use of the fabricated hybrid composites in domestic and industrial applications requiring functional materials with advanced properties for aerospace and military applications.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 349 ◽  
Author(s):  
Ji-Won Park ◽  
Jae-Ho Shin ◽  
Gyu-Seong Shim ◽  
Kyeng-Bo Sim ◽  
Seong-Wook Jang ◽  
...  

In recent years, there has been an increasing need for materials that are environmentally friendly and have functional properties. Polylactic acid (PLA) is a biomass-based polymer, which has attracted research attention as an eco-friendly material. Various studies have been conducted on functionality imparting and performance improvement to extend the field of application of PLA. Particularly, research on natural fiber-reinforced composites have been conducted to simultaneously improve their environmental friendliness and mechanical strength. Research interest in hybrid composites using two or more fillers to realize multiple functions are also increasing. Phase change materials (PCMs) absorb and emit energy through phase transition and can be used as a micro encapsulated structure. In this study, we fabricated hybrid composites using microcapsulated PCM (MPCM) and the natural fibrous filler, kenaf. We aimed to fabricate a composite material with improved endothermic characteristics, mechanical performance, and environmental friendliness. We analyzed the endothermic properties of MPCM and the structural characteristics of two fillers and finally produced an eco-friendly composite material. The PCM and kenaf contents were varied to observe changes in the performance of the hybrid composites. The endothermic properties were determined through differential scanning calorimetry, whereas changes in the physical properties of the hybrid composite were determined by measuring the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document