scholarly journals Self-assembled polyaniline nanostructures in situ deposited on silica optical fibers for ammonia gas sensing

2022 ◽  
Vol 283 ◽  
pp. 116962
Author(s):  
Siti Azlida Ibrahim ◽  
Norizah Abdul Rahman ◽  
Mohd Hanif Yaacob ◽  
Muhammad Hafiz Abu Bakar ◽  
Fatimah Syahidah Mohamad ◽  
...  
2012 ◽  
Vol 562-564 ◽  
pp. 308-311 ◽  
Author(s):  
Cheng Chun Tang ◽  
Rong Huang ◽  
Yun Ze Long ◽  
Bin Sun ◽  
Hong Di Zhang ◽  
...  

Polyaniline (PANI) is a promising functional polymer in the field of toxic gas detection. In this paper, nano-branched coaxial PANI fibers were grown on electrospun poly(methyl methacrylate) (PMMA) nanofibers by an in situ chemical oxidative polymerization method. The resultant PANI/PMMA fibers were characterized by scanning electronic microscopy and Raman spectrum analysis. The conductivity of an individual coaxial PANI/PMMA fiber is about 2.123 S/cm and that of the conducting PANI coating layer is about 21.8 S/cm. The ammonia sensing properties of the samples were tested by means of impedance analysis. The nano-branched PANI fibers can response significantly to low concentration of ammonia due to large specific surface area, and the sensitivity shows good linear relationship to the ammonia concentration of ppm level. These results indicate that nano-branched coaxial PANI fibers are promising candidate for detection of toxic ammonia gas.


2020 ◽  
Vol 12 (27) ◽  
pp. 3537-3544 ◽  
Author(s):  
Pi-Guey Su ◽  
Sheng Lin-Kuo

A single-yarn H2-gas sensor was fabricated by self-assembling Pd/GO/PAH/PSS/PAH/yarn multilayer thin film in situ self-assembled on a single-yarn.


2021 ◽  
pp. 2915-2933
Author(s):  
Yahya Abbas ◽  
Ahmed Abbas

     A polypyrrole-based ammonia-detection gas sensor was studied in this work. Under a 1.6 V electrodeposition potential, polypyrrole (PPy) was electrochemically synthesized from an aqueous solution of 0.1 M pyrrole and 0.1 M oxalic acid. An extension to the polypyrrole films was applied through electrochemical deposition on indium tin oxide (ITO), using the metal oxide nanoparticles of MgO and WO3. These films were investigated for their sensing behavior towards NH3 at different working temperatures and different weight percentages of nanoparticles .The measurements of A.C conductivity were conducted over a frequency range of 101-105 Hz and temperature range of 298-423 K . The highest electrical conductivity was equal to 3.67x10-1 Ω.cm-1 at a temperature of 323 K and frequency of 105H z. The experimental results showed that the sensitivity of the undoped and doped PPy with nanoparticle films to ammonia gas changes with the change in temperature and weight percentage.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


2021 ◽  
Vol 11 (7) ◽  
pp. 3254
Author(s):  
Marco Pisco ◽  
Francesco Galeotti

The realization of advanced optical fiber probes demands the integration of materials and structures on optical fibers with micro- and nanoscale definition. Although researchers often choose complex nanofabrication tools to implement their designs, the migration from proof-of-principle devices to mass production lab-on-fiber devices requires the development of sustainable and reliable technology for cost-effective production. To make it possible, continuous efforts are devoted to applying bottom-up nanofabrication based on self-assembly to decorate the optical fiber with highly ordered photonic structures. The main challenges still pertain to “order” attainment and the limited number of implementable geometries. In this review, we try to shed light on the importance of self-assembled ordered patterns for lab-on-fiber technology. After a brief presentation of the light manipulation possibilities concerned with ordered structures, and of the new prospects offered by aperiodically ordered structures, we briefly recall how the bottom-up approach can be applied to create ordered patterns on the optical fiber. Then, we present un-attempted methodologies, which can enlarge the set of achievable structures, and can potentially improve the yielding rate in finely ordered self-assembled optical fiber probes by eliminating undesired defects and increasing the order by post-processing treatments. Finally, we discuss the available tools to quantify the degree of order in the obtained photonic structures, by suggesting the use of key performance figures of merit in order to systematically evaluate to what extent the pattern is really “ordered”. We hope such a collection of articles and discussion herein could inspire new directions and hint at best practices to fully exploit the benefits inherent to self-organization phenomena leading to ordered systems.


Sign in / Sign up

Export Citation Format

Share Document