Synthesis and optimization of image processing accelerators using domain knowledge

2015 ◽  
Vol 61 (10) ◽  
pp. 646-658 ◽  
Author(s):  
Oliver Reiche ◽  
Konrad Häublein ◽  
Marc Reichenbach ◽  
Moritz Schmid ◽  
Frank Hannig ◽  
...  
2018 ◽  
Vol 37 (6) ◽  
pp. 451-461 ◽  
Author(s):  
Zhen Wang ◽  
Haibin Di ◽  
Muhammad Amir Shafiq ◽  
Yazeed Alaudah ◽  
Ghassan AlRegib

As a process that identifies geologic structures of interest such as faults, salt domes, or elements of petroleum systems in general, seismic structural interpretation depends heavily on the domain knowledge and experience of interpreters as well as visual cues of geologic structures, such as texture and geometry. With the dramatic increase in size of seismic data acquired for hydrocarbon exploration, structural interpretation has become more time consuming and labor intensive. By treating seismic data as images rather than signal traces, researchers have been able to utilize advanced image-processing and machine-learning techniques to assist interpretation directly. In this paper, we mainly focus on the interpretation of two important geologic structures, faults and salt domes, and summarize interpretation workflows based on typical or advanced image-processing and machine-learning algorithms. In recent years, increasing computational power and the massive amount of available data have led to the rise of deep learning. Deep-learning models that simulate the human brain's biological neural networks can achieve state-of-the-art accuracy and even exceed human-level performance on numerous applications. The convolutional neural network — a form of deep-learning model that is effective in analyzing visual imagery — has been applied in fault and salt dome interpretation. At the end of this review, we provide insight and discussion on the future of structural interpretation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chuan He ◽  
Xiaoquan Zhang ◽  
Yulong Gui ◽  
Yang Liu ◽  
Wei Zhang

Digital sports training based on digital video image processing promises to reduce the reliance on the experience of coaches in the table tennis training process and to achieve a more general physical education base. Based on this approach, this paper describes the specific forms of exercise content, movement characteristics, and skill levels in the table tennis framework and specifies the calculation methods of motion capture and movement characteristics suitable for table tennis. Meanwhile, to further improve the accuracy of the inertial motion capture system in restoring the position posture of the trainees, this paper improves the original inertial motion capture system from two aspects: contact judgment of both feet and correction of the position posture based on the contact position constraint. The simulation results show that the corrected human posture has good action smoothness. This paper first proposes a knowledge-based generic sports-assisted training framework based on generalizing the traditional sports training model. The framework contains four main modules: domain knowledge, trainees, sport evaluation, and controller. The domain knowledge module is a digital representation of the knowledge of the exercise content, improvement instructions, and skill indicators of the sport; the trainee module is the active response of the trainee to the exercise content and improvement instructions; the motion evaluation module uses motion capture technology to obtain the raw motion data of the trainee and further calculates the motion characteristics; the controller module proposes improvement instructions to the trainee or makes him/her practice new content based on the results of the motion evaluation. Based on the results of the motion evaluation, the controller module proposes improvement instructions or makes the trainee practice new content until the trainee achieves the desired goal.


2020 ◽  
Vol 24 (23) ◽  
pp. 17847-17862
Author(s):  
Andreas Haghofer ◽  
Sebastian Dorl ◽  
Andre Oszwald ◽  
Johannes Breuss ◽  
Jaroslaw Jacak ◽  
...  

AbstractIn this paper, we present a new evolution-based algorithm that optimizes cell detection image processing workflows in a self-adaptive fashion. We use evolution strategies to optimize the parameters for all steps of the image processing pipeline and improve cell detection results. The algorithm reliably produces good cell detection results without the need for extensive domain knowledge. Our algorithm also needs no labeled data to produce good cell detection results compared to the state-of-the-art neural network approaches. Furthermore, the algorithm can easily be adapted to different applications by modifying the processing steps in the pipeline and has high scalability since it supports multithreading and computation on graphical processing units (GPUs).


2013 ◽  
Vol 462-463 ◽  
pp. 410-415
Author(s):  
Jian Qin Zeng ◽  
Wei Chen ◽  
Guang Zheng Zhang ◽  
Kai Guo

Saliency estimation has become a valuable tool in image processing and raised much interest in theory and applications. Despite significant recent progress, the performance of the best available saliency estimation approaches still lags behind human visual systems. In this paper we used saliency filters and domain knowledge in photography to estimate saliency. Experiments show that our method can successfully detect the true salient content from images.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
M.A. O'Keefe ◽  
W.O. Saxton

A recent paper by Kirkland on nonlinear electron image processing, referring to a relatively new textbook, highlights the persistence in the literature of calculations based on incomplete and/or incorrect models of electron imageing, notwithstanding the various papers which have recently pointed out the correct forms of the appropriate equations. Since at least part of the problem can be traced to underlying assumptions about the illumination coherence conditions, we attempt to clarify both the assumptions and the corresponding equations in this paper, illustrating the effects of an incorrect theory by means of images calculated in different ways.The first point to be made clear concerning the illumination coherence conditions is that (except for very thin specimens) it is insufficient simply to know the source profiles present, i.e. the ranges of different directions and energies (focus levels) present in the source; we must also know in general whether the various illumination components are coherent or incoherent with respect to one another.


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


Author(s):  
R. C. Gonzalez

Interest in digital image processing techniques dates back to the early 1920's, when digitized pictures of world news events were first transmitted by submarine cable between New York and London. Applications of digital image processing concepts, however, did not become widespread until the middle 1960's, when third-generation digital computers began to offer the speed and storage capabilities required for practical implementation of image processing algorithms. Since then, this area has experienced vigorous growth, having been a subject of interdisciplinary research in fields ranging from engineering and computer science to biology, chemistry, and medicine.


Sign in / Sign up

Export Citation Format

Share Document