Effect of double holes on crack propagation in PMMA plates under blasting load by caustics method

2021 ◽  
Vol 116 ◽  
pp. 103103
Author(s):  
Chengxiao Li ◽  
Yiqiang Kang ◽  
Yuantong Zhang ◽  
Haohao Luo
2021 ◽  
pp. 1-13
Author(s):  
Shin’ichi Aratani

High speed photography by Caustics method using Cranz–Schardin camera was used to study crack propagation and divergence in thermally tempered glass. Tempered 10 mm thick glass plates were used as a specimen. New crack generation by two crack collision was observed. Regarding the presence/absence of new cracks, the dependence of the two cracks on the collision angle was confirmed. Considering that it is based on the synthesis of stress 𝜎CR generated at the crack tip, tensile stress necessary for the generation of new cracks could be created.


2021 ◽  
pp. 1-18
Author(s):  
Shin’ichi Aratani

High speed photography by Caustics method using Cranz-Schardin camera was studied for crack propagation and divergence in thermally tempered glass. Tempered 10 mm thick glass plates were used as a specimen. Two types of bifurcation and branching as the crack divergence could be observed and clarified even in 10 mm thick tempered glass. The difference of the shadow spot sizes between bifurcation type and branching type could be confirmed.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhen Lei ◽  
Mingsheng Zhao

Using the caustics method and the experimental system of digital laser dynamic caustics, the model experiment of drop hammer impact loading was carried out, and the effect of the defect shape (circular and rectangular) and the filling material (air, epoxy, and silicone rubber) on the propagation behavior of the running crack was investigated. The experimental results show that, under the impact loading, the running crack initiates at the end of precrack and propagates toward the defect. After the running crack connects to the defect, it accumulates energy within a certain period before initiating again at the upper edge of the defect. Subsequently, only one running crack is formed at the upper edge of the circular defect, but two running cracks are formed at the upper edge of the rectangular defect. The defect shape and the filling material have a significant effect not only on the energy accumulation time of the running crack at the defect but also on the stress intensity factor when initiating at the defect. The effect degree of the defect shape on the running crack propagation behavior is in the following order: circular defect > rectangular defect, whereas the effect degree of the filling material on the running crack propagation behavior follows this order: air > silicone rubber > epoxy.


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


2014 ◽  
Vol 52 (4) ◽  
pp. 283-291 ◽  
Author(s):  
Gwan Yeong Kim ◽  
Kyu Sik Kim ◽  
Joong Cheol Park ◽  
Shae Kwang Kim ◽  
Young Ok Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document