Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique

Talanta ◽  
2007 ◽  
Vol 71 (1) ◽  
pp. 443-451 ◽  
Author(s):  
Awad A. Momen ◽  
George A. Zachariadis ◽  
Aristidis N. Anthemidis ◽  
John A. Stratis
2017 ◽  
Vol 15 (1) ◽  
pp. 293-298
Author(s):  
Pakinaz Y. Khashaba ◽  
Hassan Refat H. Ali ◽  
Mohamed M. El-Wekil

AbstractA simple, rapid, cost-effective, and sensitive TLC-spectrodensitometric method for simultaneous determination of esomeprazole and domperidone was developed and tested in human plasma. Ethyl acetate: methanol: benzene: acetonitrile (5: 4: 8: 3, v/v/v/v) mobile phase was used for separation on TLC plates detected at 286 nm. The linearity ranges were 5-1200 and 2-600 ng/ spot for esomeprazole and domperidone, and limits of detection were 1.73 and 0.59 ng/spot. The effects of four variables affecting Rf were evaluated by fractional factorial design. The benzene volume and saturation time had significant effects.


1993 ◽  
Vol 76 (3) ◽  
pp. 615-620 ◽  
Author(s):  
Philip J Oles

Abstract Experimental designs based on procedures of Taguchi are described for optimizing analytical methods. Methods were efficiently developed, with improvements in precision and accuracy, for the determination of cholesterol in foods, magnesium in feed premix, and moisture in mayonnaise. Significant factors and interactions were identified by using 2-level designs, analysis of variance techniques, and commercially available computer software. The designs were prepared by using Taguchi linear diagrams. The methods developed as a result of these experiments have proven to be rugged and reliable.


2019 ◽  
Author(s):  
Yasin Orooji ◽  
Fatemeh Noorisafa ◽  
Nahid Imami ◽  
Amir R. Chaharmahali

<p>Using experimental design and statistical analysis (½ Fractional Factorial Design), this study investigates the effect of different parameters in the membrane fabrication on the performance of nanocomposite PES/TiO<sub>2</sub> membrane. </p>


Author(s):  
Joachim S. Graff ◽  
Raphael Schuler ◽  
Xin Song ◽  
Gustavo Castillo-Hernandez ◽  
Gunstein Skomedal ◽  
...  

AbstractThermoelectric modules can be used in waste heat harvesting, sensing, and cooling applications. Here, we report on the fabrication and performance of a four-leg module based on abundant silicide materials. While previously optimized Mg2Si0.3Sn0.675Bi0.025 is used as the n-type leg, we employ a fractional factorial design based on the Taguchi methods mapping out a four-dimensional parameter space among Mnx-εMoεSi1.75−δGeδ higher manganese silicide compositions for the p-type material. The module is assembled using a scalable fabrication process, using a Cu metallization layer and a Pb-based soldering paste. The maximum power output density of 53 μW cm–2 is achieved at a hot-side temperature of 250 °C and a temperature difference of 100 °C. This low thermoelectric output is related to the high contact resistance between the thermoelectric materials and the metallic contacts, underlining the importance of improved metallization schemes for thermoelectric module assembly.


Sign in / Sign up

Export Citation Format

Share Document