scholarly journals Spectrodensitometric simultaneous determination of esomeprazole and domperidone in human plasma

2017 ◽  
Vol 15 (1) ◽  
pp. 293-298
Author(s):  
Pakinaz Y. Khashaba ◽  
Hassan Refat H. Ali ◽  
Mohamed M. El-Wekil

AbstractA simple, rapid, cost-effective, and sensitive TLC-spectrodensitometric method for simultaneous determination of esomeprazole and domperidone was developed and tested in human plasma. Ethyl acetate: methanol: benzene: acetonitrile (5: 4: 8: 3, v/v/v/v) mobile phase was used for separation on TLC plates detected at 286 nm. The linearity ranges were 5-1200 and 2-600 ng/ spot for esomeprazole and domperidone, and limits of detection were 1.73 and 0.59 ng/spot. The effects of four variables affecting Rf were evaluated by fractional factorial design. The benzene volume and saturation time had significant effects.

1995 ◽  
Vol 78 (4) ◽  
pp. 1067-1071 ◽  
Author(s):  
David C Holland ◽  
Robert K Munns ◽  
José E Roybal ◽  
Jeffrey A Hurlbut ◽  
Austin R Long

Abstract A liquid chromatographic (LC) method is described for the simultaneous determination of the triazine herbicides, simazine (SIM), atrazine (ATZ), and propazine (PRO) in the 12.5–100 ppb range in catfish. The herbicides are extracted from catfish homogenates with ethyl acetate, followed by solvent partitioning between acetonitrile and petroleum ether and additional cleanup on a C18 cartridge. A Supelcosil LC-18-DB column is used for LC separation, and UV determination is at 220 nm. The isocratic mobile phase is a mixture of methanol, acetonitrile, and water. Mean recoveries from catfish were 88.7, 96.9, and 91.7%; standard deviations were 6.84,7.78, and 6.26%; and coefficients of variation were 7.72,8.03, and 6.82% for SIM, ATZ, and PRO, respectively.


RSC Advances ◽  
2020 ◽  
Vol 10 (67) ◽  
pp. 40795-40805
Author(s):  
Noha S. Abbas ◽  
Sayed M. Derayea ◽  
Mahmoud A. Omar ◽  
Gamal A. Saleh

Mixtures of DAPA and ROSV were separated using ethyl acetate : methanol (5 : 0.1 v/v) as mobile phase and applied in plasma and urine samples in addition to stability indicating and kinetic studies.


Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 79-87
Author(s):  
Оlena Golembiovska ◽  
Oleksii Voskoboinik ◽  
Galina Berest ◽  
Sergiy Kovalenko ◽  
Liliya Logoyda

Aim. The aim of study was to develop and validate a simple, highly robust (quality by design (QbD) approach), precise and accurate method using high performance liquid chromatography for the simultaneous determination of original active pharmaceutical ingredient Quinabut and its impurities. Materials and methods. Experiments were performed on a Shimadzu LC-20 Prominence HPLC separation module, equipped with a quaternary gradient pump, temperature controlled column heater, sampler manager and diode array detector and LC-20 Chemstation for data analysis (Shimadzu Corporation, Japan). Same software was used for data acquisition and processing of results. X-Terra RP18 (4.6×150 mm, 5 μm) analytical chromatographic column provided by Waters Corporation (Milford, MA) was used for all optimization experiments. Mobile phase A: acetonitrile R. Mobile phase B: 0.025 M phosphate buffer solution. Samples were chromatographed in gradient mode. Flow rate of the mobile phase: 0.7 mL/min. Column temperature: 40 °С. Detection: at 233 nm wavelength. Injection volume: 50 μl. Results. Screening of the influence of four chromatographic factors on different chromatographic responses was performed as the initial step of analytical method optimization. A randomized fractional factorial experimental design (24–1) of resolution IV with central point was used. Buffer pH, amount of acetonitrile in mobile phase A, the amount of phosphate buffer solution in mobile phase B and column temperature were selected as factors of interest, and were used to generate the fractional factorial experimental design. Linearity was established in the range of LOQ level to 0.2% having regression coefficients 0.9977. Calibration curve – y = 0.0132 + 0.9902. Since Δt for the content of quinabut is less than max δ, the technique is stable over time. The possibility of contamination of the sample by decomposition products by keeping it under stressful conditions (irradiation of the substance solution with UV light (UV irradiation with mercury lamp light); acid hydrolysis with 0.1 M hydrochloric acid solution; oxidative decomposition) was investigated. As a result of the irradiation with UV light, the impurity peaks for about 8.74 min (impurity C) and 12.68 min (impurity B) are additionally revealed. Their content exceeds the limits of normalization and is 0.6% and 3.7%, respectively. Therefore, the powder of the substance and its solutions should be stored away from direct sunlight. The column temperature and the speed of the mobile phase within ± 10% did not significantly affect the test results. The results were found to be within the assay variability limits during the entire process. Conclusion. 1) The optimization of a new analytical method capable of simultaneous determination of quinabut assay and its impurities drug products was performed with a single fractional factorial experimental design. Only 11 experiments were needed for the optimization, while at least 16 experiments would be needed to cover the same analytical method operational region of the first optimization step with a traditional one factor at time (OFAT) approach. 2) HPLC method was developed and validated for the simultaneous detection and quantitation of quinabut and its impurities. 3) The final analytical method optimized with QbD approach was validated according to ICHQ2R1 guideline. The method proved to be sensitive, selective, precise, linear, accurate and stability-indicating. 4) The method was successfully applied to the analysis of demonstrating acceptable precision and adequate sensitivity for the detection and quantitation of quinabut and its impurities. So it may be reasonable to claim that the method can be extended to the analysis of drug formulations and stability samples as well. This optimization reflects in saving of time and resources since one stability study includes hundreds of samples tested during the product’s shelf life.


2019 ◽  
Vol 3 (1) ◽  
pp. 16-22
Author(s):  
Juliana Veloso Ferreira ◽  
Gerson A. Pianetti ◽  
Christian Fernandes

Sulphonylureas are widely used in the treatment of Diabetes mellitus, one of the main causes of death in human population. Their determination is essential in pharmacological research and in the development of new drugs. Generally, determination of sulphonylureas in biological matrices is performed using conventional sample preparation techniques, which frequently leads to an increase of analysis time and errors. In this context, a bioanalytical method for the simultaneous determination of sulphonylureas by direct injection of human plasma was developed and optimized. An automated column-switching high performance liquid chromatographic system with a restricted access media (RAM) column coupled to a fused-core column was employed. At the first dimension, a RAM column with mobile phase of ultrapure water pH 6.0 at a flow-rate of 1.0 mL min-1 was used. The valve switching time was 3 minutes. At the second dimension, a C18 guard-column coupled to a C18 fused core column with mobile phase of acetonitrile and 10 mM phosphate buffer pH 3.0 (54:46 v/v) at a flow-rate of 0.8 mL min-1 were employed. The column switching system was performed in backflush configuration with an analyte elution time of 1 minute. Flufenamic acid was used as the internal standard. The mean plasma protein exclusion percentage by the RAM-column was 104.5%. The developed and optimized method showed to be fast and simple, allowing the direct injection of biological sample into the chromatographic system and the simultaneous determination of three sulphonylureas in only 12 minutes, including the sample treatment, separation and detection.


2011 ◽  
Vol 94 (4) ◽  
pp. 1094-1099 ◽  
Author(s):  
Hossein Tavallali ◽  
S Faraneh Zareiyan J. ◽  
Maryam Naghian

Abstract A simple, rapid, and effcient method using TLC with a fluorescence plate reader has been described for simultaneous determination of caffeine and paracetamol. Determination was carried out using the fluorescencequenching action of caffeine and paracetamol on a TLC plate with a fluorescent indicator at λ ex = 254 nm in the linear ranges of 0.2–1.9 and 0.03–1.5 µg/L, respectively. Separation of caffeine and paracetamol were performed on the TLC plate, and the best results were obtained using the optimized mobile phase n-hexane–ethyl acetate–ethanol (2.5 + 1.5 + 0.4, v/v). Some important parameters, such as solvent type and ratio of the mobile phase, the presence of other components, and instrumental parameters, were studied. Caffeine and paracetamol detection limits were 0.025 and 0.032 µg/L, and RSD values for 0.6 µg/L caffeine and 0.06 µg/L paracetamol (n = 5) were 1.93 and 2.06%, respectively. Using this technique, some pharmaceuticals containing caffeine and paracetamol were analyzed with satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document