DNAzyme-based sensing probe protected by DNA tetrahedron from nuclease degradation for the detection of lead ions

Talanta ◽  
2021 ◽  
pp. 122543
Author(s):  
Huaqin Guan ◽  
Shulin Yang ◽  
Cheng Zheng ◽  
Lingye Zhu ◽  
Shujuan Sun ◽  
...  
1986 ◽  
Vol 51 (6) ◽  
pp. 1340-1351 ◽  
Author(s):  
Rudolf Kohn ◽  
Karol Tihlárik

The binding of calcium and lead ions to carboxy derivatives of starch prepared by allowing nitrogen dioxide to act on native maize starch (procedure A) and on starch 2,3-dialdehyde derivatives of degrees of oxidation DO(d.a.) ≥ 0.94 (procedure B) was studied. The carboxy group content of the samples in the H+ form was 4.6 - 12.1 mmol g-1. The effect of alkaline medium on the stability of the carboxy derivatives and on their ability to bind and exchange cations was examined. The Ca2+ → 2K+ exchange was evaluated in terms of the decrease in the electrostatic free enthalpy Δ(Gel/N)KCa, determined by alkalimetric potentiometric titrations, and the binding of Pb2+ ions was evaluated in terms of the activity of the Pb2+ counter-ions determined in suspensions of Pb salts of the carboxy derivatives by means of an ion specific electrode. The IR and CD spectra revealed that the carboxystarch preparations obtained by procedure A contained, in addition to free carboxy groups, a considerable amount of carbonyl groups. During the conversion of the latter groups to the former, even in a weakly alkaline medium, the carboxy derivatives undergo an appreciable degradation and lose, to a great extent, their ability to bind and exchange cations. Procedure B, on the other hand, leads to highly selective starch and amylose carboxy derivatives, exhibiting a small amount of carbonyl groups and featuring a relative stability towards alkaline medium; their binding capacity is as high as 12 milliequivalents of cations per g of sample.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dezhi Feng ◽  
Jing Su ◽  
Yi Xu ◽  
Guifang He ◽  
Chenguang Wang ◽  
...  

AbstractProstate-specific antigen (PSA) is the most widely used biomarker for the early diagnosis of prostate cancer. Existing methods for PSA detection are burdened with some limitations and require improvement. Herein, we developed a novel microfluidic–electrochemical (μFEC) detection system for PSA detection. First, we constructed an electrochemical biosensor based on screen-printed electrodes (SPEs) with modification of gold nanoflowers (Au NFs) and DNA tetrahedron structural probes (TSPs), which showed great detection performance. Second, we fabricated microfluidic chips by DNA TSP-Au NF-modified SPEs and a PDMS layer with designed dense meandering microchannels. Finally, the μFEC detection system was achieved based on microfluidic chips integrated with the liquid automatic conveying unit and electrochemical detection platform. The μFEC system we developed acquired great detection performance for PSA detection in PBS solution. For PSA assays in spiked serum samples of the μFEC system, we obtained a linear dynamic range of 1–100 ng/mL with a limit of detection of 0.2 ng/mL and a total reaction time <25 min. Real serum samples of prostate cancer patients presented a strong correlation between the “gold-standard” chemiluminescence assays and the μFEC system. In terms of operation procedure, cost, and reaction time, our method was superior to the current methods for PSA detection and shows great potential for practical clinical application in the future.


Nano Today ◽  
2021 ◽  
Vol 38 ◽  
pp. 101203
Author(s):  
Ziwei Han ◽  
Fangning Wan ◽  
Jinqi Deng ◽  
Junxiang Zhao ◽  
Yike Li ◽  
...  

2021 ◽  
Vol 1147 ◽  
pp. 170-177
Author(s):  
Pingping Ji ◽  
Guimei Han ◽  
Yan Huang ◽  
Hongxin Jiang ◽  
Qiwen Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document