Cell cycle and cell-fate determination in Drosophila neural cell lineages

2005 ◽  
Vol 21 (7) ◽  
pp. 413-420 ◽  
Author(s):  
Pierre Fichelson ◽  
Agnès Audibert ◽  
Françoise Simon ◽  
Michel Gho
Genetics ◽  
2019 ◽  
Vol 212 (3) ◽  
pp. 773-788
Author(s):  
Françoise Simon ◽  
Anne Ramat ◽  
Sophie Louvet-Vallée ◽  
Jérôme Lacoste ◽  
Angélique Burg ◽  
...  

Cell diversity in multicellular organisms relies on coordination between cell proliferation and the acquisition of cell identity. The equilibrium between these two processes is essential to assure the correct number of determined cells at a given time at a given place. Using genetic approaches and correlative microscopy, we show that Tramtrack-69 (Ttk69, a Broad-complex, Tramtrack and Bric-à-brac - Zinc Finger (BTB-ZF) transcription factor ortholog of the human promyelocytic leukemia zinc finger factor) plays an essential role in controlling this balance. In the Drosophila bristle cell lineage, which produces the external sensory organs composed by a neuron and accessory cells, we show that ttk69 loss-of-function leads to supplementary neural-type cells at the expense of accessory cells. Our data indicate that Ttk69 (1) promotes cell cycle exit of newborn terminal cells by downregulating CycE, the principal cyclin involved in S-phase entry, and (2) regulates cell-fate acquisition and terminal differentiation, by downregulating the expression of hamlet and upregulating that of Suppressor of Hairless, two transcription factors involved in neural-fate acquisition and accessory cell differentiation, respectively. Thus, Ttk69 plays a central role in shaping neural cell lineages by integrating molecular mechanisms that regulate progenitor cell cycle exit and cell-fate commitment.


Cell Cycle ◽  
2008 ◽  
Vol 7 (20) ◽  
pp. 3246-3257 ◽  
Author(s):  
Benjamin Pfeuty ◽  
Thérèse David-Pfeuty ◽  
Kunihiko Kaneko

2010 ◽  
Vol 38 (2) ◽  
pp. 577-582 ◽  
Author(s):  
Michael Borg ◽  
David Twell

Pollen grains represent the highly reduced haploid male gametophyte generation in angiosperms. They play an essential role in plant fertility by generating and delivering twin sperm cells to the embryo sac to undergo double fertilization. The functional specialization of the male gametophyte and double fertilization are considered to be key innovations in the evolutionary success of angiosperms. The haploid nature of the male gametophyte and its highly tractable ontogeny makes it an attractive system to study many fundamental biological processes, such as cell fate determination, cell-cycle progression and gene regulation. The present mini-review encompasses key advances in our understanding of the molecular mechanisms controlling male gametophyte patterning in angiosperms. A brief overview of male gametophyte development is presented, followed by a discussion of the genes required at landmark events of male gametogenesis. The value of the male gametophyte as an experimental system to study the interplay between cell fate determination and cell-cycle progression is also discussed and exemplified with an emerging model outlining the regulatory networks that distinguish the fate of the male germline from its sister vegetative cell. We conclude with a perspective of the impact emerging data will have on future research strategies and how they will develop further our understanding of male gametogenesis and plant development.


2003 ◽  
Vol 120 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Nicolas Nègre ◽  
Alain Ghysen ◽  
Anne-Marie Martinez

Sign in / Sign up

Export Citation Format

Share Document