scholarly journals Novel insights into cell cycle regulation of cell fate determination

2019 ◽  
Vol 20 (6) ◽  
pp. 467-475 ◽  
Author(s):  
Su-wei Gao ◽  
Feng Liu
Cell Cycle ◽  
2008 ◽  
Vol 7 (20) ◽  
pp. 3246-3257 ◽  
Author(s):  
Benjamin Pfeuty ◽  
Thérèse David-Pfeuty ◽  
Kunihiko Kaneko

2010 ◽  
Vol 38 (2) ◽  
pp. 577-582 ◽  
Author(s):  
Michael Borg ◽  
David Twell

Pollen grains represent the highly reduced haploid male gametophyte generation in angiosperms. They play an essential role in plant fertility by generating and delivering twin sperm cells to the embryo sac to undergo double fertilization. The functional specialization of the male gametophyte and double fertilization are considered to be key innovations in the evolutionary success of angiosperms. The haploid nature of the male gametophyte and its highly tractable ontogeny makes it an attractive system to study many fundamental biological processes, such as cell fate determination, cell-cycle progression and gene regulation. The present mini-review encompasses key advances in our understanding of the molecular mechanisms controlling male gametophyte patterning in angiosperms. A brief overview of male gametophyte development is presented, followed by a discussion of the genes required at landmark events of male gametogenesis. The value of the male gametophyte as an experimental system to study the interplay between cell fate determination and cell-cycle progression is also discussed and exemplified with an emerging model outlining the regulatory networks that distinguish the fate of the male germline from its sister vegetative cell. We conclude with a perspective of the impact emerging data will have on future research strategies and how they will develop further our understanding of male gametogenesis and plant development.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1349-1349
Author(s):  
Emmanuelle Passegue ◽  
Amy J. Wagers ◽  
Sylvie Giuriato ◽  
Wade C. Anderson ◽  
Irving L. Weissman

Abstract The blood is a perpetually renewing tissue seeded by a rare population of adult bone marrow hematopoietic stem cells (HSC). During steady-state hematopoiesis, the HSC population is relatively quiescent but constantly maintains a low numbers of cycling cells that differentiate to produce the various lineage of mature blood cells. However, in response to hematological stress, the entire HSC population can be recruited into cycle to self-renew and regenerate the blood-forming system. HSC proliferation is therefore highly adaptative and requires appropriate regulation of cell cycle progression to drive both differentiation-associated and self-renewal-associated proliferation, without depletion of the stem cell pool. Although the molecular events controlling HSC proliferation are still poorly understood, they are likely determined, at least in part, by regulated expression and/or function of components and regulators of the cell cycle machinery. Here, we demonstrate that the long-term self-renewing HSC (defined as Lin−/c-Kit+/Sca-1+/Thy1.1int/Flk2−) exists in two distinct states that are both equally important for their in vivo functions as stem cells: a numerically dominant quiescent state, which is critical for HSC function in hematopoietic reconstitution; and a proliferative state, which represents almost a fourth of this population and is essential for HSC functions in differentiation and self-renewal. We show that when HSC exit quiescence and enter G1 as a prelude to cell division, at least two critical events occur: first, during the G1 and subsequent S-G2/M phases, they temporarily lose efficient in vivo engraftment activity, while retaining in vitro differentiation potential; and second, they select the particular cell cycle proteins that are associated with specific developmental outcomes (self-renewal vs. differentiation) and developmental fates (myeloid vs. lymphoid). Together, these findings provide a direct link between HSC proliferation, cell cycle regulation and cell fate decisions that have critical implications for both the therapeutic use of HSC and the understanding of leukemic transformation.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 577
Author(s):  
Lucile Courtial ◽  
Vincent Picco ◽  
Gilles Pagès ◽  
Christine Ferrier-Pagès

The extracellular signal-regulated protein kinase (ERK) signalling pathway controls key cellular processes, such as cell cycle regulation, cell fate determination and the response to external stressors. Although ERK functions are well studied in a variety of living organisms ranging from yeast to mammals, its functions in corals are still poorly known. The present work aims to give practical tools to study the expression level of ERK protein and the activity of the ERK signalling pathway in corals. The antibody characterisation experiment was performed five times and identical results were obtained. The present study validated the immune-reactivity of commercially available antibodies directed against ERK and its phosphorylated/activated forms on protein extracts of the reef-building coral Stylophora pistillata.


Sign in / Sign up

Export Citation Format

Share Document