Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells

2012 ◽  
Vol 26 (5) ◽  
pp. 709-717 ◽  
Author(s):  
Laurence Huc ◽  
Anthony Lemarié ◽  
Françoise Guéraud ◽  
Cécile Héliès-Toussaint
2018 ◽  
Vol 19 (11) ◽  
pp. 3445 ◽  
Author(s):  
Yi Jin ◽  
Yanjie Tan ◽  
Lupeng Chen ◽  
Yan Liu ◽  
Zhuqing Ren

Non-alcoholic fatty liver disease (NAFLD) has become the world’s most common liver disease. The disease can develop liver fibrosis or even carcinomas from the initial hepatic steatosis, and this process is influenced by many factors. Reactive oxygen species (ROS), as potent oxidants in cells, have been reported previously to play an important role in the development of NAFLD progression via promoting neutral lipid accumulation. Here, we found that ROS can promote lipid droplet formation in hepatocytes by promoting perilipin2 (PLIN2) expression. First, we used different concentrations of hydrogen peroxide to treat HepG2 cells and found that the number of lipid droplets in the cells increased, however also that this effect was dose-independent. Then, the mRNA level of several lipid droplet-associated genes was detected with hydrogen peroxide treatment and the expression of PLIN2, PLIN5, and FSP27 genes was significantly up-regulated (p < 0.05). We overexpressed PLIN2 in HepG2 cells and found that the lipid droplets in the cells were markedly increased. Interference with PLIN2 inhibits ROS-induced lipid droplet formation, revealing that PLIN2 is a critical factor in this process. We subsequently analyzed the regulatory pathway and protein interaction network that is involved in PLIN2 and found that PLIN2 can regulate intracellular lipid metabolism through the PPARα/RXRA and CREB/CREBBP signaling pathways. The majority of the data indicated the correlation between hydrogen peroxide-induced PLIN2 and lipid droplet upregulation. In conclusion, ROS up-regulates the expression of PLIN2 in hepatocytes, whereas PLIN2 promotes the formation of lipid droplets resulting in lipid accumulation in liver tissues.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Xiao-Tian Zhang ◽  
Chun-Jiang Yu ◽  
Jian-Wei Liu ◽  
Yan-Ping Zhang ◽  
Chao Zhang ◽  
...  

We analyzed the effects of a traditional Chinese medicine, Qizhi Jiangtang Jiaonang (QJJ), on insulin resistance (IR) in vitro. After an in vitro model of IR was established by treating human liver cancer cells (HepG2 cells) with palmitic acid, the cells were then treated with various concentrations of QJJ. Treatment with 400 µM palmitic acid for 24 h induced IR in HepG2 cells. The survival rate for HepG2 cells in the IR group was significantly lower than that of the untreated control group (P< 0.001); however, QJJ restored HepG2 cell survival (P< 0.001). As compared with HepG2 cells in the IR group, QJJ at all doses analyzed significantly increased glucose consumption (allP< 0.05). Moreover, treatment with all the QJJ doses significantly reduced the mean intracellular reactive oxygen species levels as compared with the IR group (allP< 0.05). Furthermore, high-dose QJJ reduced both TNF-αand IL-6 levels as compared to the IR group (allP< 0.05). QJJ ameliorated the altered PI3K, GLUT4, and RAGE expression observed with IR. In conclusion, QJJ can improve IR in HepG2 cells, which may be mediated through the IRS-1/PI3K/GLUT4 signaling pathway as well as regulation of NF-κB-mediated inflammation and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document