Human relevance of an in vitro gene signature in HaCaT for skin sensitization

2015 ◽  
Vol 29 (1) ◽  
pp. 81-84 ◽  
Author(s):  
Jochem W. van der Veen ◽  
Henny Hodemaekers ◽  
Astrid A. Reus ◽  
Wilfred J.M. Maas ◽  
Henk van Loveren ◽  
...  
Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


2021 ◽  
Vol 11 (5) ◽  
pp. 332
Author(s):  
Szu-Jen Wang ◽  
Pei-Ming Yang

Hepatocellular carcinoma (HCC) is a relatively chemo-resistant tumor. Several multi-kinase inhibitors have been approved for treating advanced HCC. However, most HCC patients are highly refractory to these drugs. Therefore, the development of more effective therapies for advanced HCC patients is urgently needed. Stathmin 1 (STMN1) is an oncoprotein that destabilizes microtubules and promotes cancer cell migration and invasion. In this study, cancer genomics data mining identified STMN1 as a prognosis biomarker and a therapeutic target for HCC. Co-expressed gene analysis indicated that STMN1 expression was positively associated with cell-cycle-related gene expression. Chemical sensitivity profiling of HCC cell lines suggested that High-STMN1-expressing HCC cells were the most sensitive to MST-312 (a telomerase inhibitor). Drug–gene connectivity mapping supported that MST-312 reversed the STMN1-co-expressed gene signature (especially BUB1B, MCM2/5/6, and TTK genes). In vitro experiments validated that MST-312 inhibited HCC cell viability and related protein expression (STMN1, BUB1B, and MCM5). In addition, overexpression of STMN1 enhanced the anticancer activity of MST-312 in HCC cells. Therefore, MST-312 can be used for treating STMN1-high expression HCC.


2021 ◽  
Vol 350 ◽  
pp. S72
Author(s):  
D.H. Lee ◽  
S.-H. Kim ◽  
J.H. Lee ◽  
J.-Y Yang ◽  
H.-S. Shin ◽  
...  

2008 ◽  
Vol 25 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Hitoshi Sakaguchi ◽  
Takao Ashikaga ◽  
Masaaki Miyazawa ◽  
Nanae Kosaka ◽  
Yuichi Ito ◽  
...  

2015 ◽  
Vol 13 (1) ◽  
pp. nrs.13005 ◽  
Author(s):  
James G. MacKrell ◽  
Benjamin C. Yaden ◽  
Heather Bullock ◽  
Keyue Chen ◽  
Pamela Shetler ◽  
...  

The high regenerative capacity of adult skeletal muscle relies on a self-renewing depot of adult stem cells, termed muscle satellite cells (MSCs). Androgens, known mediators of overall body composition and specifically skeletal muscle mass, have been shown to regulate MSCs. The possible overlapping function of androgen regulation of muscle growth and MSC activation has not been carefully investigated with regards to muscle regeneration. Therefore, the aim of this study was to examine coinciding androgen-mediated genetic changes in an in vitro MSC model and clinically relevant in vivo models. A gene signature was established via microarray analysis for androgen-mediated MSC engagement and highlighted several markers including follistatin (FST), IGF-1, C-X-C chemokine receptor 4 (CXCR4), hepatocyte growth factor (HGF) and glucocorticoid receptor (GR/Nr3c1). In an in vivo muscle atrophy model, androgen re-supplementation significantly increased muscle size and expression of IGF-1, FST, and HGF, while significantly decreasing expression of GR. Biphasic gene expression profiles over the 7-day re-supplementation period identifed temporal androgen regulation of molecular targets involved in satellite cell engagement into myogenesis. In a muscle injury model, removal of androgens resulted in delayed muscle recovery and regeneration. Modifications in the androgen signaling gene signature, along with reduced Pax7 and MyoD expression, suggested that limited MSC activation and increased inflammation contributed to the delayed regeneration. However, enhanced MSC activation in the androgen-deplete mouse injury model was driven by an androgen receptor (AR) agonist. These results provide novel in vitro and in vivo evidence describing molecular targets of androgen signaling, while also increasing support for translational use of AR agonists in skeletal muscle recovery and regeneration.


2013 ◽  
Vol 27 (2) ◽  
pp. 857-863 ◽  
Author(s):  
Kazutoshi Saito ◽  
Masaaki Miyazawa ◽  
Yuko Nukada ◽  
Hitoshi Sakaguchi ◽  
Naohiro Nishiyama

2021 ◽  
Author(s):  
Kristin Roseth Aass ◽  
Robin Mjelle ◽  
Martin H. Kastnes ◽  
Synne S. Tryggestad ◽  
Luca M. van den Brink ◽  
...  

AbstractIL-32 is a non-classical cytokine expressed in cancers, inflammatory diseases and infections. IL-32 can have both extracellular and intracellular functions, and its receptor is not identified. We here demonstrate that endogenously expressed, intracellular IL-32 binds to components of the mitochondrial respiratory chain and promotes oxidative phosphorylation. Knocking out IL-32 in malignant plasma cells significantly reduced survival and proliferation in vitro and in vivo. High throughput transcriptomic and MS-metabolomic profiling of IL-32 KO cells revealed that loss of IL-32 leads to profound perturbations in metabolic pathways, with accumulation of lipids, pyruvate precursors and citrate, indicative of reduced mitochondrial function. IL-32 is expressed in a subgroup of multiple myeloma patients with an inferior prognosis. Primary myeloma cells expressing IL-32 were characterized by a plasma cell gene signature associated with immune activation, proliferation and oxidative phosphorylation. We propose a novel concept for regulation of metabolism by an intracellular cytokine and identify IL-32 as an endogenous growth and survival factor for malignant plasma cells. IL-32 is a potential prognostic biomarker and a treatment target in multiple myeloma.


2020 ◽  
Author(s):  
Alexandr Samocha ◽  
Hanna M. Doh ◽  
Vaishnavi Sitarama ◽  
Quy H. Nguyen ◽  
Oghenekevwe Gbenedio ◽  
...  

SummaryDuring puberty, robust morphogenesis occurs in the mammary gland; stem- and progenitor-cells develop into mature basal- and luminal-cells to form the ductal tree. The receptor signals that govern this process in mammary epithelial cells (MECs) are incompletely understood. The EGFR has been implicated and here we focused on EGFR’s downstream pathway component Rasgrp1. We find that Rasgrp1 dampens EGF-triggered signals in MECs. Biochemically and in vitro, Rasgrp1 perturbation results in increased EGFR-Ras-PI3K-AKT and mTORC1-S6 kinase signals, increased EGF-induced proliferation, and aberrant branching-capacity in 3D cultures. However, in vivo, Rasgrp1 perturbation results in delayed ductal tree maturation with shortened branches and reduced cellularity. Rasgrp1-deficient MEC organoids revealed lower frequencies of basal cells, the compartment that incorporates stem cells. Molecularly, EGF effectively counteracts Wnt signal-driven stem cell gene signature in organoids. Collectively, these studies demonstrate the need for fine-tuning of EGFR signals to properly instruct mammary epithelium during puberty.


2018 ◽  
Vol 115 (37) ◽  
pp. 9282-9287 ◽  
Author(s):  
Roland Sonntag ◽  
Nives Giebeler ◽  
Yulia A. Nevzorova ◽  
Jörg-Martin Bangen ◽  
Dirk Fahrenkamp ◽  
...  

E-type cyclins E1 (CcnE1) and E2 (CcnE2) are regulatory subunits of cyclin-dependent kinase 2 (Cdk2) and thought to control the transition of quiescent cells into the cell cycle. Initial findings indicated that CcnE1 and CcnE2 have largely overlapping functions for cancer development in several tumor entities including hepatocellular carcinoma (HCC). In the present study, we dissected the differential contributions of CcnE1, CcnE2, and Cdk2 for initiation and progression of HCC in mice and patients. To this end, we tested the HCC susceptibility in mice with constitutive deficiency for CcnE1 or CcnE2 as well as in mice lacking Cdk2 in hepatocytes. Genetic inactivation of CcnE1 largely prevented development of liver cancer in mice in two established HCC models, while ablation of CcnE2 had no effect on hepatocarcinogenesis. Importantly, CcnE1-driven HCC initiation was dependent on Cdk2. However, isolated primary hepatoma cells typically acquired independence on CcnE1 and Cdk2 with increasing progression in vitro, which was associated with a gene signature involving secondary induction of CcnE2 and up-regulation of cell cycle and DNA repair pathways. Importantly, a similar expression profile was also found in HCC patients with elevated CcnE2 expression and poor survival. In general, overall survival in HCC patients was synergistically affected by expression of CcnE1 and CcnE2, but not through Cdk2. Our study suggests that HCC initiation specifically depends on CcnE1 and Cdk2, while HCC progression requires expression of any E-cyclin, but no Cdk2.


2018 ◽  
Vol 129 (6) ◽  
pp. 1446-1455 ◽  
Author(s):  
Markus M. Luedi ◽  
Sanjay K. Singh ◽  
Jennifer C. Mosley ◽  
Islam S. A. Hassan ◽  
Masumeh Hatami ◽  
...  

OBJECTIVEDexamethasone, a known regulator of mesenchymal programming in glioblastoma (GBM), is routinely used to manage edema in GBM patients. Dexamethasone also activates the expression of genes, such as CEBPB, in GBM stem cells (GSCs). However, the drug’s impact on invasion, proliferation, and angiogenesis in GBM remains unclear. To determine whether dexamethasone induces invasion, proliferation, and angiogenesis in GBM, the authors investigated the drug’s impact in vitro, in vivo, and in clinical information derived from The Cancer Genome Atlas (TCGA) cohort.METHODSExpression profiles of patients from the TCGA cohort with mesenchymal GBM (n = 155) were compared with patients with proneural GBM by comparative marker selection. To obtain robust data, GSCs with IDH1 wild-type (GSC3) and with IDH1 mutant (GSC6) status were exposed to dexamethasone in vitro and in vivo and analyzed for invasion (Boyden chamber, human-specific nucleolin), proliferation (Ki-67), and angiogenesis (CD31). Ex vivo tumor cells from dexamethasone-treated and control mice were isolated by fluorescence activated cell sorting and profiled using Affymetrix chips for mRNA (HTA 2.0) and microRNAs (miRNA 4.0). A pathway analysis was performed to identify a dexamethasone-regulated gene signature, and its relationship with overall survival (OS) was assessed using Kaplan-Meier analysis in the entire GBM TCGA cohort (n = 520).RESULTSThe mesenchymal subgroup, when compared with the proneural subgroup, had significant upregulation of a dexamethasone-regulated gene network, as well as canonical pathways of proliferation, invasion, and angiogenesis. Dexamethasone-treated GSC3 demonstrated a significant increase in invasion, both in vitro and in vivo, whereas GSC6 demonstrated a modest increase. Furthermore, dexamethasone treatment of both GSC3 and GSC6 lines resulted in significantly elevated cell proliferation and angiogenesis in vivo. Patients with mesenchymal GBM had significant upregulation of dexamethasone-regulated pathways when compared with patients with proneural GBM. A prognostic (p = 0.0007) 33-gene signature was derived from the ex vivo expression profile analyses and used to dichotomize the entire TCGA cohort by high (median OS 12.65 months) or low (median OS 14.91 months) dexamethasone signature.CONCLUSIONSThe authors present evidence that furthers the understanding of the complex effects of dexamethasone on biological characteristics of GBM. The results suggest that the drug increases invasion, proliferation, and angiogenesis in human GSC-derived orthotopic tumors, potentially worsening GBM patients’ prognoses. The authors believe that careful investigation is needed to determine how to minimize these deleterious dexamethasone-associated side effects in GBM.


Sign in / Sign up

Export Citation Format

Share Document