Essential role of amino acids in αD–β4 loop of a Bacillus thuringiensis Cyt2Aa2 toxin in binding and complex formation on lipid membrane

Toxicon ◽  
2013 ◽  
Vol 74 ◽  
pp. 130-137 ◽  
Author(s):  
Kunat Suktham ◽  
Wanwarang Pathaichindachote ◽  
Boonhiang Promdonkoy ◽  
Chartchai Krittanai
2002 ◽  
Vol 115 (7) ◽  
pp. 1435-1440 ◽  
Author(s):  
Mickael Rialland ◽  
Francesco Sola ◽  
Corrado Santocanale

Formation of pre-replicative complexes at origins is an early cell cycle event essential for DNA duplication. A large body of evidence supports the notion that Cdc6 protein, through its interaction with the origin recognition complex, is required for pre-replicative complex assembly by loading minichromosome maintenance proteins onto DNA. In fission yeast and Xenopus, this reaction known as the licensing of chromatin for DNA replication also requires the newly identified Cdt1 protein. We studied the role of hCdt1 protein in the duplication of the human genome by antibody microinjection experiments and analyzed its expression during the cell cycle in human non-transformed cells. We show that hCdt1 is essential for DNA replication in intact human cells, that it executes its function in a window of the cell cycle overlapping with pre-replicative complex formation and that it is necessary for the loading of minichromosome maintenance proteins onto chromatin. Intriguingly, we observed that hCdt1 protein, in contrast to other licensing factors, is already present in serum-deprived G0 arrested cells and its levels increase only marginally upon re-entry in the cell cycle.


1998 ◽  
Vol 72 (5) ◽  
pp. 4274-4280 ◽  
Author(s):  
Joseph Curran

ABSTRACT The SeV P protein is found as a homotrimer (P3) when it is expressed in mammalian cells, and trimerization is mediated by a predicted coiled-coil motif which maps within amino acids (aa) 344 to 411 (the BoxA region). The bacterially expressed protein also appears to be trimeric, apparently precluding a role for phosphorylation in the association of the P monomers. I have examined the role of P trimerization both in the protein’s interaction with the nucleocapsid (N:RNA) template and in the protein’s function on the template during RNA synthesis. As with the results of earlier experiments (32), I found that both the BoxA and BoxC (aa 479 to 568) regions were required for stable binding of P to the N:RNA. Binding was also observed with P proteins containing less than three BoxC regions, suggesting that trimerization may be required to permit contacts between multiple BoxC regions and the N:RNA. However, these heterologous trimers failed to function in viral RNA synthesis, indicating that the third C-terminal leg of the trimer plays an essential role in P function on the template. We speculate that this function may involve the movement of P (and possibly the polymerase complex) on the template and the maintenance of processivity.


2001 ◽  
Vol 69 (6) ◽  
pp. 3628-3634 ◽  
Author(s):  
Christian Busch ◽  
Joachim Orth ◽  
Nabil Djouder ◽  
Klaus Aktories

ABSTRACT The protein toxin of Pasteurella multocida PMT is a potent mitogen and activator of phospholipase Cβ. In this study different toxin fragments were investigated. A C-terminal fragment encompassing amino acids 581 through 1285 (PMT581C) was constructed, which was inactive toward intact embryonic bovine lung (EBL) cells after addition to culture medium but caused reorganization of the actin cytoskeleton and rounding up of cells when introduced into the cells by electroporation. As the holotoxin, the toxin fragment PMT581C induced an increase in total inositol phosphate levels after introduction into the cell by electroporation. A C-terminal fragment shorter than PMT581C as well as N-terminal fragments were inactive. Exchange of cysteine-1165 for serine in the holotoxin resulted in a complete loss of the ability to increase inositol phosphate levels. Correspondingly, the mutated toxin fragment PMT581C.C1165S was inactive after cell introduction by electroporation, suggesting an essential role of Cys-1165 in the biological activity of the toxin.


2012 ◽  
Vol 50 (01) ◽  
Author(s):  
N Lange ◽  
S Sieber ◽  
A Erhardt ◽  
G Sass ◽  
HJ Kreienkamp ◽  
...  

1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


1979 ◽  
Vol 42 (04) ◽  
pp. 1193-1206 ◽  
Author(s):  
Barbara Nunn

SummaryThe hypothesis that platelet ADP is responsible for collagen-induced aggregation has been re-examined. It was found that the concentration of ADP obtaining in human PRP at the onset of aggregation was not sufficient to account for that aggregation. Furthermore, the time-course of collagen-induced release in human PRP was the same as that in sheep PRP where ADP does not cause release. These findings are not consistent with claims that ADP alone perpetuates a collagen-initiated release-aggregation-release sequence. The effects of high doses of collagen, which released 4-5 μM ADP, were not inhibited by 500 pM adenosine, a concentration that greatly reduced the effect of 300 μM ADP. Collagen caused aggregation in ADP-refractory PRP and in platelet suspensions unresponsive to 1 mM ADP. Thus human platelets can aggregate in response to collagen under circumstances in which they cannot respond to ADP. Apyrase inhibited aggregation and ATP release in platelet suspensions but not in human PRP. Evidence is presented that the means currently used to examine the role of ADP in aggregation require investigation.


1981 ◽  
Vol 31 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Mohamed A. Ashy ◽  
Abd El-Galil ◽  
M. Khalil ◽  
Abou-Zeid A. Abou-Zeid
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document