Video and spatio-temporal parameter assessment of gait after abobotulinumtoxinA treatment: A pilot study

Toxicon ◽  
2021 ◽  
Vol 190 ◽  
pp. S22-S23
Author(s):  
Alberto Esquenazi ◽  
Stella Le
2020 ◽  
Vol 12 (17) ◽  
pp. 2675
Author(s):  
Qianqian Han ◽  
Zhenguo Niu

Inland surface water is highly dynamic, seasonally and inter-annually, limiting the representativity of the water coverage information that is usually obtained at any single date. The long-term dynamic water extent products with high spatial and temporal resolution are particularly important to analyze the surface water change but unavailable up to now. In this paper, we construct a global water Normalized Difference Vegetation Index (NDVI) spatio-temporal parameter set based on the Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI. Employing the Google Earth Engine, we construct a new Global Surface Water Extent Dataset (GSWED) with coverage from 2000 to 2018, having an eight-day temporal resolution and a spatial resolution of 250 m. The results show that: (1) the MODIS NDVI-based surface water mapping has better performance compared to other water extraction methods, such as the normalized difference water index, the modified normalized difference water index, and the OTSU (maximal between-cluster variance method). In addition, the water-NDVI spatio-temporal parameter set can be used to update surface water extent datasets after 2018 as soon as the MODIS data are updated. (2) We validated the GSWED using random water samples from the Global Surface Water (GSW) dataset and achieved an overall accuracy of 96% with a kappa coefficient of 0.9. The producer’s accuracy and user’s accuracy were 97% and 90%, respectively. The validated comparisons in four regions (Qinghai Lake, Selin Co Lake, Utah Lake, and Dead Sea) show a good consistency with a correlation value of above 0.9. (3) The maximum global water area reached 2.41 million km2 between 2000 and 2018, and the global water showed a decreasing trend with a significance of P = 0.0898. (4) Analysis of different types of water area change regions (Selin Co Lake, Urmia Lake, Aral Sea, Chiquita Lake, and Dongting Lake) showed that the GSWED can not only identify the seasonal changes of the surface water area and abrupt changes of hydrological events but also reflect the long-term trend of the water changes. In addition, GSWED has better performance in wetland areas and shallow areas. The GSWED can be used for regional studies and global studies of hydrology, biogeochemistry, and climate models.


Burns ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 897-905 ◽  
Author(s):  
Melek Merve Erdem ◽  
Gonul Koc ◽  
Kemal Kismet ◽  
Cınar Yasti ◽  
Semra Topuz

2019 ◽  
Author(s):  
Constantin Winker ◽  
Maimu A. Rehbein ◽  
Dean Sabatinelli ◽  
Markus Junghofer

AbstractThe ventromedial prefrontal cortex (vmPFC) is a major hub of the reward system and has been shown to activate specifically in response to pleasant / rewarding stimuli. Previous studies demonstrate enhanced pleasant cue reactivity after single applications of transcranial direct current stimulation (tDCS) to the vmPFC. Here we present a pilot case study in which we assess the cumulative impact of multiple consecutive vmPFC-tDCS sessions on the processing of visual emotional stimuli in an event-related MEG recording design. The results point to stable modulation of increased positivity biases (pleasant > unpleasant stimulus signal strength) after excitatory vmPFC stimulation and a reversed pattern (pleasant < unpleasant) after inhibitory stimulation across five consecutive tDCS sessions. Moreover, cumulative effects of these emotional bias modulations were observable for several source-localized spatio-temporal clusters, suggesting an increase in modulatory efficiency by repeated tDCS sessions. This pilot study provides evidence for improvements in the effectiveness and utility of a novel tDCS paradigm in the context of emotional processing.


2015 ◽  
Vol 49 (1) ◽  
pp. 172-188
Author(s):  
G. Quintavalle Pastorino ◽  
M. Albertini ◽  
F. Carlsen ◽  
A. A. Cunningham ◽  
B. A. Daniel ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Thomas Seidl ◽  
Tiago Guedes Russomanno ◽  
Michael Stöckl ◽  
Martin Lames

Improving performances in sprinting requires feedback on sprint parameters such as step length and step time. However, these parameters from the top speed interval (TSI) are difficult to collect in a competition setting. Recent advances in tracking technology allows to provide positional data with high spatio-temporal resolution. This pilot study, therefore, aims to automatically obtain general sprint parameters, parameters characterizing, and derived from TSI from raw speed. In addition, we propose a method for obtaining the intra-cyclic speed amplitude in TSI. We analyzed 32 100 m-sprints of 7 male and 9 female athletes (18.9 ± 2.8 years; 100 m PB 10.55–12.41 s, respectively, 12.18–13.31 s). Spatio-temporal data was collected with a radio-based position detection system (RedFIR, Fraunhofer Institute, Germany). A general velocity curve was fitted to the overall speed curve (vbase), TSI (upper quintile of vbase values) was determined and a cosine term was added to vbase within TSI (vcycle) to capture the cyclic nature of speed. This allowed to derive TSI parameters including TSI amplitude from the fitted parameters of the cosine term. Results showed good approximation for vbase (error: 5.0 ± 1.0%) and for vcycle (2.0 ± 1.0%). For validation we compared spatio-temporal TSI parameters to criterion values from laser measurement (speed) and optoelectric systems (step time and step length) showing acceptable RMSEs for mean speed (0.08 m/s), for step time (0.004 s), and for step length (0.03 m). Top speed interval amplitude showed a significant difference between males (mean: 1.41 m/s) and females (mean: 0.71 m/s) and correlations showed its independence from other sprint parameters. Gender comparisons for validation revealed the expected differences. This pilot study investigated the feasibility of estimating sprint parameters from high-quality tracking data. The proposed method is independent of the data source and allows to automatically obtain general sprint parameters and TSI parameters, including TSI amplitude assessed here for the first time in a competition-like setting.


Author(s):  
Pietro Picerno ◽  
Johnny Padulo

The centrifugal track, a basin-shaped track characterised by a platform with a parabolic section, exploits the centripetal acceleration to increase the bodyweight of the athlete during the foot contact phase of running. Because this overload is produced by an inertial force that is equally distributed to the infinitesimal point masses of the body, no postural changes are expected with respect to level running. This pilot study aimed to compare some selected key kinematic quantities of running on the centrifugal track with respect to level running. A video-based three-dimensional (3D) motion analysis was performed on five sprinters and used to compute spatio-temporal variables, frontal and sagittal trunk kinematics and knee sagittal kinematics at footstrike, midstance and foot-off over two consecutive steps at similar speeds. No significant changes were found in spatio-temporal variables and knee kinematics between the right and the left leg during running on the centrifugal track. Neither step length nor step duration was found statistically different between the two running typologies. Trunk flexion was not altered during the stance phase of running on the centrifugal track. Knee angle at footstrike was found similar to level running. A slightly larger but statistically significant knee flexion at midstance and knee extension at foot-off were found with respect to flat-track running, but these findings appear more beneficial for strength training rather than detrimental for the running technique. The centrifugal track was found to be a viable alternative to the common resisted sprint training techniques as the training effect is produced without localised overloads on the musculoskeletal system and detrimental postural changes.


Author(s):  
Clara Beatriz Sanz-Morère ◽  
Elena Martini ◽  
Barbara Meoni ◽  
Gabriele Arnetoli ◽  
Antonella Giffone ◽  
...  

Abstract Background Transfemoral amputation is a serious intervention that alters the locomotion pattern, leading to secondary disorders and reduced quality of life. The outcomes of current gait rehabilitation for TFAs seem to be highly dependent on factors such as the duration and intensity of the treatment and the age or etiology of the patient. Although the use of robotic assistance for prosthetic gait rehabilitation has been limited, robotic technologies have demonstrated positive rehabilitative effects for other mobility disorders and may thus offer a promising solution for the restoration of healthy gait in TFAs. This study therefore explored the feasibility of using a bilateral powered hip orthosis (APO) to train the gait of community-ambulating TFAs and the effects on their walking abilities. Methods Seven participants (46–71 years old with different mobility levels) were included in the study and assigned to one of two groups (namely Symmetry and Speed groups) according to their prosthesis type, mobility level, and prior experience with the exoskeleton. Each participant engaged in a maximum of 12 sessions, divided into one Enrollment session, one Tuning session, two Assessment sessions (conducted before and after the training program), and eight Training sessions, each consisting of 20 minutes of robotically assisted overground walking combined with additional tasks. The two groups were assisted by different torque-phase profiles, aiming at improving symmetry for the Symmetry group and at maximizing the net power transferred by the APO for the Speed group. During the Assessment sessions, participants performed two 6-min walking tests (6mWTs), one with (Exo) and one without (NoExo) the exoskeleton, at either maximal (Symmetry group) or self-selected (Speed group) speed. Spatio-temporal gait parameters were recorded by commercial measurement equipment as well as by the APO sensors, and metabolic efficiency was estimated via the Cost of Transport (CoT). Additionally, kinetic and kinematic data were recorded before and after treatment in the NoExo condition. Results The one-month training protocol was found to be a feasible strategy to train TFAs, as all participants smoothly completed the clinical protocol with no relevant mechanical failures of the APO. The walking performance of participants improved after the training. During the 6mWT in NoExo, participants in the Symmetry and Speed groups respectively walked 17.4% and 11.7% farther and increased walking speed by 13.7% and 17.9%, with improved temporal and spatial symmetry for the former group and decreased energetic expenditure for the latter. Gait analysis showed that ankle power, step width, and hip kinematics were modified towards healthy reference levels in both groups. In the Exo condition metabolic efficiency was reduced by 3% for the Symmetry group and more than 20% for the Speed group. Conclusions This study presents the first pilot study to apply a wearable robotic orthosis (APO) to assist TFAs in an overground gait rehabilitation program. The proposed APO-assisted training program was demonstrated as a feasible strategy to train TFAs in a rehabilitation setting. Subjects improved their walking abilities, although further studies are required to evaluate the effectiveness of the APO compared to other gait interventions. Future protocols will include a lighter version of the APO along with optimized assistive strategies.


Sign in / Sign up

Export Citation Format

Share Document