Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment

2008 ◽  
Vol 179 (3) ◽  
pp. 155-162 ◽  
Author(s):  
Wolfgang Völkel ◽  
Mandy Kiranoglu ◽  
Hermann Fromme
2021 ◽  
Vol 21 (3) ◽  
pp. 1439-1445
Author(s):  
Yanpeng Shi ◽  
Lei Zhang ◽  
Ji Shao ◽  
Xiaoyue Shan ◽  
Haipeng Ye ◽  
...  

Herein, a facile and low-cost method for the preparation of activated carbon from peanut shell was developed for the first time for the fast extraction and determination of Bisphenol A in human urine. Bisphenol A was separated by EC-C18 column (250 mm×4.6 mm, 4 μm) and was detected by VWD, with retention time for qualitative analysis and peak area for quantitation. The parameters, pH values of the urine, adsorbent dose, adsorption time and so on, were optimized to achieve the excellent extraction performance. The detection limit of Bisphenol A in human urine was 1.0 ng · mL−1 (S/N = 3), and the standard curve was linear in the range of 5.0 ng · mL−1˜200.0 ng · mL−1 (r = 0.9993). The average recovery of Bisphenol A was 78.5˜96.2% at three spiked levels in the range of 5.00 ng · mL−1˜200.00 ng·mL−1. The method was proved simple, practical and highly sensitive, which could satisfy the request for the determination of Bisphenol A in human urine.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 42
Author(s):  
Noelia Pallarés ◽  
Dionisia Carballo ◽  
Emilia Ferrer ◽  
Yelko Rodríguez-Carrasco ◽  
Houda Berrada

Human biomonitoring constitutes a suitable tool to assess exposure to toxins overcoming the disadvantages of traditional methods. Urine constitutes an accessible biological matrix in biomonitoring studies. Mycotoxins are secondary metabolites produced naturally by filamentous fungi that produce a wide range of adverse health effects. Thus, the determination of urinary mycotoxin levels is a useful tool for assessing the individual exposure to these food contaminants. In this study, a suitable methodology has been developed to evaluate the presence of aflatoxin B2 (AFB2), aflatoxin (AFG2), ochratoxin A (OTA), ochratoxin B (OTB), zearalenone (ZEA), and α-zearalenol (α-ZOL) in urine samples as exposure biomarkers. For this purpose, different extraction procedures, namely, the Solid Phase Extraction (SPE); Dispersive Liquid–Liquid Microextraction (DLLME); and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were assessed, followed by Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry with Electrospray Ionization (LC-ESI-QTOF-MS) determination. Then, the proposed methodology was applied to determine mycotoxin concentrations in 56 human urine samples from volunteers and to estimate the potential risk of exposure. The results obtained revealed that 55% of human urine samples analyzed resulted positive for at least one mycotoxin. Among all studied mycotoxins, only AFB2, AFG2, and OTB were detected with incidences of 32, 41, and 9%, respectively, and levels in the range from <LOQ to 69.42 µg/L. Risk assessment revealed a potential health risk, obtaining MoE values < 10,000. However, it should be highlighted that few samples were contaminated, and that more data about mycotoxin excretion rates and their BMDL10 values are needed for a more accurate risk assessment.


Sign in / Sign up

Export Citation Format

Share Document