Genetic bases of rice grain shape: so many genes, so little known

2013 ◽  
Vol 18 (4) ◽  
pp. 218-226 ◽  
Author(s):  
Rongyu Huang ◽  
Liangrong Jiang ◽  
Jingsheng Zheng ◽  
Tiansheng Wang ◽  
Houcong Wang ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Weifeng Yang ◽  
Liang Xiong ◽  
Jiayan Liang ◽  
Qingwen Hao ◽  
Xin Luan ◽  
...  

Abstract Background: Rice varieties are required to have high yield and good grain quality. Grain chalkiness and grain shape are two important traits of rice grain quality. Low chalkiness slender grains are preferred by most rice consumers. Here, we dissected two closely linked quantitative trait loci (QTLs) controlling grain chalkiness and grain shape on rice chromosome 8 by substitution mapping. Results: Two closely linked QTLs controlling grain chalkiness and grain shape were identified using single-segment substitution lines (SSSLs). The two QTLs were then dissected on rice chromosome 8 by secondary substitution mapping. qPGC8.1 was located in an interval of 1382.6 kb and qPGC8.2 was mapped in a 2057.1 kb region. The maximum distance of the two QTLs was 4.37 Mb and the space distance of two QTL intervals was 0.72 Mb. qPGC8.1 controlled grain chalkiness and grain width. qPGC8.2 was responsible for grain chalkiness and for grain length and grain width. The additive effects of qPGC8.1 and qPGC8.2 on grain chalkiness were not affected by heat stress. Conclusions: Two closely linked QTLs qPGC8.1 and qPGC8.2 were dissected on rice chromosome 8. They controlled the phenotypes of grain chalkiness and grain shape. The two QTLs were insensitive to high temperature.


2015 ◽  
Vol 65 (4) ◽  
pp. 308-318 ◽  
Author(s):  
Kazufumi Nagata ◽  
Tsuyu Ando ◽  
Yasunori Nonoue ◽  
Tatsumi Mizubayashi ◽  
Noriyuki Kitazawa ◽  
...  

Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Liangrong Jiang ◽  
Guotian Li ◽  
Mawsheng Chern ◽  
Rashmi Jain ◽  
Nhan T. Pham ◽  
...  

2019 ◽  
Vol 46 (9) ◽  
pp. 857 ◽  
Author(s):  
Zhimin Lin ◽  
Jingwan Yan ◽  
Jun Su ◽  
Huaqing Liu ◽  
Changquan Hu ◽  
...  

Grain size is an important factor in rice yield. Several genes related to grain size have been reported, but most of them are determined by quantitative trail loci (QTL) traits. Gene D26 is a novel site mutation of OsGRAS19 and involved in the brassinosteroid (BR) signalling pathway. However, whether D26 is involved in the process of rice reproductive development remains unclear. Here, gene cloning and functional analysis revealed that D26 has an obvious regulatory effect on grain size. Overexpression or CRISP/Cas9 mutant of D26 also showed that grain size was positively influenced. Cellular analyses show that D26 modulates grain size by promoting cell division and regulating the cell number in the upper epidermis of the glume. The overexpression results further suggest that the level of D26 expression positively impacts grain length and leaf angles and that the expression of several known grain size genes is involved in the regulation. Based on our results, D26, as a transcription factor, effectively improves rice grain shape.


2021 ◽  
Author(s):  
PengLin Zhan ◽  
Xin Wei ◽  
Zhili Xiao ◽  
Xiaoling Wang ◽  
Shuaipeng Ma ◽  
...  

Abstract Grain size and grain number play extremely important roles in rice grain yield. Here, we identify GW10 , which encodes a P450 subfamily protein and controlls grain size and grain number by using Lemont ( tropical japonica ) as donor parent and HJX74 ( indica ) as recipient parent. The GW10 locus was mapped into a 20.1 kb region on the long arm of Chromosome 10. Lower expression of the gw10 in panicle is contributed to the shorter and narrower rice grain, and the increased number of grains per panicle. Furthermore, the higher expression levels of some of the brassinosteroid (BR) biosynthesis and response genes are associated with the NIL- GW10 , which strongly suggests that the GW10 is a key node in the brassinosteroid-mediated regulation of rice grain shape and grain number.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Dong-Sheng Zhao ◽  
Qian-Feng Li ◽  
Chang-Quan Zhang ◽  
Chen Zhang ◽  
Qing-Qing Yang ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanan Niu ◽  
Tianxiao Chen ◽  
Chunchao Wang ◽  
Kai Chen ◽  
Congcong Shen ◽  
...  

Abstract Background Grain weight and grain shape are important agronomic traits that affect the grain yield potential and grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm resources for grain weight and grain shape. Results Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600, Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided. Conclusions Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice and provide valuable information for improving rice grain yield and grain quality through molecular breeding.


Sign in / Sign up

Export Citation Format

Share Document