scholarly journals PARP inhibitors and metastatic castration-resistant prostate cancer: uture directions and pitfalls

2022 ◽  
Vol 15 (1) ◽  
pp. 101263
Author(s):  
A. Franza ◽  
M. Claps ◽  
G. Procopio
2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Carlo Messina ◽  
Carlo Cattrini ◽  
Davide Soldato ◽  
Giacomo Vallome ◽  
Orazio Caffo ◽  
...  

Despite chemotherapy and novel androgen-receptor signalling inhibitors (ARSi) have been approved during the last decades, metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease with poor clinical outcomes. Several studies found that germline or acquired DNA damage repair (DDR) defects affect a high percentage of mCRPC patients. Among DDR defects, BRCA mutations show relevant clinical implications. BRCA mutations are associated with adverse clinical features in primary tumors and with poor outcomes in patients with mCRPC. In addition, BRCA mutations predict good response to poly-ADP ribose polymerase (PARP) inhibitors, such as olaparib, rucaparib, and niraparib. However, concerns still remain on the role of extensive mutational testing in prostate cancer patients, given the implications for patients and for their progeny. The present comprehensive review attempts to provide an overview of BRCA mutations in prostate cancer, focusing on their prognostic and predictive roles.


Cells ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 860 ◽  
Author(s):  
Jacob J. Adashek ◽  
Rohit K. Jain ◽  
Jingsong Zhang

The approval of upfront abiraterone for castration-sensitive prostate cancer and the approval of enzalutamide and apalutamide for non-metastatic castration-resistant prostate cancer have led to early utilization of potent androgen receptor (AR) signaling inhibitors in treating advanced prostate cancer. There is an unmet need to develop novel therapies beyond targeting AR signaling for metastatic castration-resistant prostate cancer (mCRPC). Poly (ADP-ribose) polymerase inhibitors (PARPi) belong to a class of targeted agents being developed for the treatment of homologous recombination repair (HRR) deficient tumors. Olaparib, rucaparib, niraparib, veliparib, and talazoparib were evaluated in early phase trials as a monotherapy for HRR-deficient mCRPC. Among them, olaparib and rucaparib have breakthrough designations for BRCA1/2-mutated mCRPC. Phase II studies also reported clinical activity of the PARPi and abiraterone combination and the PARPi checkpoint inhibitor combination in HRR-intact mCRPC. Ongoing phase III trials are testing these combinations as frontline or later line treatments for mCRPC. This review summarizes the critical clinical data as well as ongoing clinical trials for developing PARPi in treating mCRPC.


2021 ◽  
Vol 41 (10) ◽  
pp. 4687-4695
Author(s):  
NAOHIRO FUJIMOTO ◽  
KENICHI HARADA ◽  
MASAKI SHIOTA ◽  
IKKO TOMISAKI ◽  
AKINORI MINATO ◽  
...  

Author(s):  
Benedito A. Carneiro ◽  
Tamara L. Lotan ◽  
Andre de Souza ◽  
Rahul Aggarwal

Genomic characterization of metastatic castration-resistant prostate cancer (mCRPC) has been remodeling the treatment landscape of this disease in the past decade. The emergence of molecularly defined subsets of mCRPC is altering the treatment paradigm from therapeutics with nonspecific activity across the spectrum, including androgen receptor (AR)-directed treatments, docetaxel, and cabazitaxel, to targeted approaches directed at molecular subsets of disease. The meaningful benefit of PARP inhibitors in mCRPC carrying mutations in DNA repair genes demonstrated in a phase III trial epitomizes this transition in the treatment paradigm of mCRPC and brings new challenges related to how to sequence and integrate the targeted therapies on top of the treatments with broad activity in all mCRPC. To enable and sustain the advance of precision oncology in the management of mCRPC, genomic characterization is required, including somatic and germline testing, for all patients with the ultimate goal of longitudinal molecular profiling guiding treatment decisions and sequential treatments of this lethal disease. This article reviews the emerging molecular subtypes of mCRPC that are driving the evolution of mCRPC treatment.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3467
Author(s):  
Albert Jang ◽  
Oliver Sartor ◽  
Pedro C. Barata ◽  
Channing J. Paller

Metastatic castration-resistant prostate cancer (mCRPC) is an incurable malignancy with a poor prognosis. Up to 30% of patients with mCRPC have mutations in homologous recombination repair (HRR) genes. Poly (ADP-ribose) polymerase (PARP) inhibitors take advantage of HRR deficiency to kill tumor cells based on the concept of synthetic lethality. Several PARP inhibitors (PARPis) have been successful in various malignancies with HRR gene mutations including BRCA1/2, especially in breast cancer and ovarian cancer. More recently, olaparib and rucaparib were approved for mCRPC refractory to novel hormonal therapies, and other PARPis will likely follow. This article highlights the mechanism of action of PARPis at the cellular level, the preclinical data regarding a proposed mechanism of action and the effectiveness of PARPis in cancer cell lines and animal models. The article expands on the clinical development of PARPis in mCRPC, discusses potential biomarkers that may predict successful tumor control, and summarizes present and future clinical research on PARPis in the metastatic disease landscape.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Eric Powers ◽  
Georgia Sofia Karachaliou ◽  
Chester Kao ◽  
Michael R. Harrison ◽  
Christopher J. Hoimes ◽  
...  

Abstract Metastatic castration-resistant prostate cancer (mCRPC) remains a terminal diagnosis with an aggressive disease course despite currently approved therapeutics. The recent successful development of poly ADP-ribose polymerase (PARP) inhibitors for patients with mCRPC and mutations in DNA damage repair genes has added to the treatment armamentarium and improved personalized treatments for prostate cancer. Other promising therapeutic agents currently in clinical development include the radiotherapeutic 177-lutetium-prostate-specific membrane antigen (PSMA)-617 targeting PSMA-expressing prostate cancer and combinations of immunotherapy with currently effective treatment options for prostate cancer. Herein, we have highlighted the progress in systemic treatments for mCRPC and the promising agents currently in ongoing clinical trials.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 334
Author(s):  
Dhruv Bansal ◽  
Melissa A. Reimers ◽  
Eric M. Knoche ◽  
Russell K. Pachynski

Although most prostate cancers are localized, and the majority are curable, recurrences occur in approximately 35% of men. Among patients with prostate-specific antigen (PSA) recurrence and PSA doubling time (PSADT) less than 15 months after radical prostatectomy, prostate cancer accounted for approximately 90% of the deaths by 15 years after recurrence. An immunosuppressive tumor microenvironment (TME) and impaired cellular immunity are likely largely responsible for the limited utility of checkpoint inhibitors (CPIs) in advanced prostate cancer compared with other tumor types. Thus, for immunologically “cold” malignancies such as prostate cancer, clinical trial development has pivoted towards novel approaches to enhance immune responses. Numerous clinical trials are currently evaluating combination immunomodulatory strategies incorporating vaccine-based therapies, checkpoint inhibitors, and chimeric antigen receptor (CAR) T cells. Other trials evaluate the efficacy and safety of these immunomodulatory agents’ combinations with standard approaches such as androgen deprivation therapy (ADT), taxane-based chemotherapy, radiotherapy, and targeted therapies such as tyrosine kinase inhibitors (TKI) and poly ADP ribose polymerase (PARP) inhibitors. Here, we will review promising immunotherapies in development and ongoing trials for metastatic castration-resistant prostate cancer (mCRPC). These novel trials will build on past experiences and promise to usher a new era to treat patients with mCRPC.


Oncotarget ◽  
2017 ◽  
Vol 8 (19) ◽  
pp. 31815-31829 ◽  
Author(s):  
Francesco Morra ◽  
Francesco Merolla ◽  
Virginia Napolitano ◽  
Gennaro Ilardi ◽  
Caterina Miro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document