The investigation of contact ratio in mixed lubrication

2006 ◽  
Vol 39 (5) ◽  
pp. 409-416 ◽  
Author(s):  
J.B. Luo ◽  
S. Liu
2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Yuechang Wang ◽  
Abdel Dorgham ◽  
Ying Liu ◽  
Chun Wang ◽  
Mark C. T. Wilson ◽  
...  

Abstract The ability to simulate mixed lubrication problems has greatly improved, especially in concentrated lubricated contacts. A mixed lubrication simulation method was developed by utilizing the semi-system approach which has been proven to be highly useful for improving stability and robustness of mixed lubrication simulations. Then different variants of the model were developed by varying the discretization schemes used to treat the Couette flow terms in the Reynolds equation, varying the evaluation of density derivatives and varying the contribution of terms in the coefficient matrix. The resulting pressure distribution, film thickness distribution, lambda ratio, contact ratio, and the computation time were compared and found to be strongly influenced by the choice of solution scheme. This indicates that the output from mixed lubrication solvers can be readily used for qualitative and parametric studies, but care should be taken when making quantitative predictions.


2012 ◽  
Vol 258 (8) ◽  
pp. 3888-3896 ◽  
Author(s):  
Huaping Xiao ◽  
Dan Guo ◽  
Shuhai Liu ◽  
Guoshun Pan ◽  
Xinchun Lu

1999 ◽  
Vol 121 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Xiaofei Jiang ◽  
D. Y. Hua ◽  
H. S. Cheng ◽  
Xiaolan Ai ◽  
Si C. Lee

Most machine elements, such as gears and bearings, are operated in the mixed lubrication region. To evaluate lubrication performance for these tribological components, a contact model in mixed elastohydrodynamic lubrication is presented. This model deals with the EHL problem in the very thin film region where the film is not thick enough to separate the asperity contact of rough surface. The macro contact area is then divided into the lubricated area and the micro asperity contact areas by the contacted rough surfaces. In the case when asperity to asperity contact is present, Reynolds equation is only valid in the lubricated areas. Asperity contact pressure is determined by the interaction of two mating surfaces. The applied load is carried out by the lubricant film and the contacted asperities. FFT techniques are utilized to calculate the surface displacement (forward problem) by convolution and the asperity contact pressure (inverse problem) by deconvolution for non-periodic surfaces. With the successful implementation of FFT and multigrid methods, the lubricated contact problem can be solved within hours on a PC for the grids as large as one million nodes. This capability enables us to simulate random rough surfaces in a dense mesh. The load ratio, contact area ratio and average gap are introduced to characterize the performance of mixed lubrication with asperity contacts. Discussions are given regarding the asperity orientation as well as the effect of rolling-sliding condition. Numerical results of real rough topography are illustrated with effects of velocity parameter on load ratio, contact ratio, and average gap.


2001 ◽  
Vol 124 (1) ◽  
pp. 129-136 ◽  
Author(s):  
HR Le ◽  
M. P. F. Sutcliffe

A mechanical model of cold rolling of foil is coupled with a sophisticated tribological model. The tribological model treats the “mixed” lubrication regime of practical interest, in which there is “real” contact between the roll and strip as well as pressurized oil between the surfaces. The variation of oil film thickness and contact ratio in the bite is found by considering flattening of asperities on the foil and the build-up of hydrodynamic pressure through the bite. The boundary friction coefficient for the contact areas is taken from strip drawing tests under similar tribological conditions. Theoretical results confirm that roll load and forward slip decrease with increasing rolling speed due to the decrease in contact ratio and friction. The predictions of the model are verified using mill trials under industrial conditions. For both thin strip and foil, the load predicted by the model has reasonable agreement with the measurements. For rolling of foil, forward slip is overestimated. This is greatly improved if a variation of friction through the bite is considered.


1995 ◽  
Vol 117 (1) ◽  
pp. 80-85 ◽  
Author(s):  
Yi Fang ◽  
Masataka Shirakashi

This paper presents a method for evaluating the lubrication characteristics between the piston and cylinder in a swash-plate type axial piston pump-motor under mixed lubrication conditions. A numerical analysis is carried out in order to obtain the metal contact force between the piston and cylinder, and the contact ratio λ is shown to represent the mixed lubrication condition both for the pump and the motor strokes. The contact ratio, λ, is also obtained experimentally by detecting electric resistance between the piston and cylinder in a practical swash-plate type machine. The experimental result is expressed by a relationship between λ and SO (the ratio of dynamic pressure to supply pressure) as indicated by the numerical analysis. In conclusion, the mixed lubrication characteristics between the piston and cylinder in a swash-plate type pump-motor is expressed by λ−SO curve irrespective of the operating conditions such as the supply pressure or the rotation speed.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


1996 ◽  
Vol 118 (3) ◽  
pp. 439-443 ◽  
Author(s):  
Chuen-Huei Liou ◽  
Hsiang Hsi Lin ◽  
F. B. Oswald ◽  
D. P. Townsend

This paper presents a computer simulation showing how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented in this paper was performed by using the NASA gear dynamics code DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low-contact-ratio gears (contact ratio less than two), increasing the contact ratio reduced gear dynamic load. For high-contact-ratio gears (contact ratio equal to or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high-contact-ratio gears minimized dynamic load better than low-contact-ratio gears.


Sign in / Sign up

Export Citation Format

Share Document