A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact

1999 ◽  
Vol 121 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Xiaofei Jiang ◽  
D. Y. Hua ◽  
H. S. Cheng ◽  
Xiaolan Ai ◽  
Si C. Lee

Most machine elements, such as gears and bearings, are operated in the mixed lubrication region. To evaluate lubrication performance for these tribological components, a contact model in mixed elastohydrodynamic lubrication is presented. This model deals with the EHL problem in the very thin film region where the film is not thick enough to separate the asperity contact of rough surface. The macro contact area is then divided into the lubricated area and the micro asperity contact areas by the contacted rough surfaces. In the case when asperity to asperity contact is present, Reynolds equation is only valid in the lubricated areas. Asperity contact pressure is determined by the interaction of two mating surfaces. The applied load is carried out by the lubricant film and the contacted asperities. FFT techniques are utilized to calculate the surface displacement (forward problem) by convolution and the asperity contact pressure (inverse problem) by deconvolution for non-periodic surfaces. With the successful implementation of FFT and multigrid methods, the lubricated contact problem can be solved within hours on a PC for the grids as large as one million nodes. This capability enables us to simulate random rough surfaces in a dense mesh. The load ratio, contact area ratio and average gap are introduced to characterize the performance of mixed lubrication with asperity contacts. Discussions are given regarding the asperity orientation as well as the effect of rolling-sliding condition. Numerical results of real rough topography are illustrated with effects of velocity parameter on load ratio, contact ratio, and average gap.

1997 ◽  
Vol 119 (3) ◽  
pp. 456-461 ◽  
Author(s):  
Qian (Jane) Wang ◽  
Fanghui Shi ◽  
Si C. Lee

Numerical analyses of finite journal bearings operating with large eccentricity ratios were conducted to better understand the mixed lubrication phenomena in conformal contacts. The average Reynolds equation derived by Patir and Cheng was utilized in the lubrication analysis. The influence function, calculated numerically using the finite element method, was employed to compute the bearing deformation. The effects of bearing surface roughness were incorporated in the present analysis for the calculations of the asperity contact pressure and the asperity contact area. The numerical solutions of the hydrodynamic and asperity contact pressures, lubricant film thickness, and asperity contact area were evaluated based on a simulated bearing-journal geometry. The calculations revealed that the asperity contact pressure may vary significantly along both the width and the circumferential directions. It was also shown that the asperity contacts and the lubricant film thickness were strongly dependent on the bearing width, asperity orientation, and operating conditions.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Neelesh Deolalikar ◽  
Farshid Sadeghi ◽  
Sean Marble

Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance (i.e., pressure, temperature) of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. In this study, a deterministic mixed lubrication model was developed to determine the pressure and temperature of mixed lubricated circular and elliptic contacts for measured and simulated surfaces operating under pure rolling and rolling/sliding condition. In this model, we simultaneously solve for lubricant and asperity contact pressures. The model allows investigation of the condition and transition from boundary to full-film lubrication. The variation of contact area and load ratios is examined for various velocities and slide-to-roll ratios. The mixed lubricated model is also used to predict the transient flash temperatures occurring in contacts due to asperity contact interactions and friction. In order to significantly reduce the computational efforts associated with surface deformation and temperature calculation, the fast Fourier transform algorithm is implemented.


2019 ◽  
Vol 20 (2) ◽  
pp. 207 ◽  
Author(s):  
Chongpei Liu ◽  
Bin Zhao ◽  
Wanyou Li ◽  
Xiqun Lu

The bushing profiles have important effects on the performance of journal bearing. In this article, the effects of plain profile, double conical profile, and double parabolic profile on the elastohydrodynamic lubrication of the journal bearing under steady operating conditions are investigated. The journal misalignment and asperity contact between journal and bushing surface are considered, while the modification of the bushing profiles due to running-in is neglected. Finite element method is used for the elastic deformation of bushing surface, while the numerical solution is established by using finite difference method and overrelaxation iterative method. The numerical results reveal that the double parabolic profile with appropriate size can significantly increase the minimum film thickness and reduce the asperity contact pressure and friction, while the maximum film pressure, load-carrying capacity, and leakage flow rate change slightly under steady operating conditions. This study may help to reduce the edge wear and prolong the service life of the journal bearing.


2019 ◽  
Vol 71 (9) ◽  
pp. 1099-1107
Author(s):  
Guo Xiang Guo Xiang ◽  
Yanfeng Han ◽  
Renxiang Chen ◽  
Jiaxu Wang Jiaxu Wang ◽  
Ni Xiaokang

Purpose This paper aims to present a numerical model to investigate the mixed lubrication performances of journal-thrust coupled bearings (or coupled bearings). Design/methodology/approach The coupled hydrodynamic effect (or coupled effect) between the journal and the thrust bearing is considered by ensuring the continuity of the hydrodynamic pressure and the flow field at the common boundary. The mixed lubrication performances of the coupled bearing are comparatively studied for the cases of considering and not considering coupled effect. Findings The simulated results show that the hydrodynamic pressure distributions for both the journal and thrust bearing are modified due to the coupled effect. The decreased load capacity of the journal bearing and the increased load capacity of the thrust bearing can be observed when the coupled effect is considered. And the coupled effect can facilitate in reducing the asperity contact load for both the journal and thrust bearing. Additionally, the interaction between the mixed lubrication behaviors, especially for the friction coefficient, of the journal and the thrust bearing is significant in the elastohydrodynamic lubrication regime, while it becomes weak in the mixed lubrication regime. Originality/value The developed model can reveal the mutual effects of the mixed lubrication behavior between the journal and the thrust bearing.


2007 ◽  
Vol 23 (4) ◽  
pp. 341-352 ◽  
Author(s):  
J. L. Liou ◽  
J. F. Lin

ABSTRACTThe elastic-plastic microcontact model of a sphere in contact with a flat plate is developed in the present study to investigate the effect of surface roughness on the total contact area and contact load. From the study done by the finite element method, the dimensionless asperity contact area, average contact pressure, and contact load in the elastoplastic regime are assumed to be a power form as a function of dimensionless interference (δ/δec). The coefficients and exponents of the power form expressions can be determined by the boundary conditions set at the two ends of the elastoplastic deformation regime. The contact pressures evaluated by the present model are compared with those predicted by the Hertz theory, without considering the surface roughness and the reported model, including the roughness effect, but only manipulating in the elastic regime. The area of non-zero contact pressure is enlarged if the surface roughness is considered in the microcontact behavior. The maximum contact pressure is lowered by the presence of surface roughness if the contact load is fixed. Under a normal load, both the contact pressure and the contact area are elevated by raising the plasticity index for the surface of the same surface roughness.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

Three-dimensional elastic-plastic contact of two nominally flat rough surfaces is considered. Equations governing the shoulder-shoulder contact of asperities are derived based on the asperity constitutive relations from a finite element model of the elastic-plastic interaction proposed by Kogut and Etsion (2002), in which asperity scale constitutive relations are derived using piecewise approximate functions. An analytical fusion technique is developed to combine the piecewise asperity level constitutive relations. Shoulder-shoulder asperity contact yields a slanted contact force consisting of two components, one in the normal direction and a half-plane tangential component. Statistical summation of the asperity level contact force components and asperity level contact area results in the total contact force and total contact area formulae between two rough surfaces. Approximate equations are developed in closed form for contact force components and contact area.


2010 ◽  
Vol 154-155 ◽  
pp. 531-534 ◽  
Author(s):  
Zhi Qian Xu ◽  
Xiang Zhen Yan ◽  
Xiu Juan Yang

In this paper, the calculation formulas of the asperity’s deformation related with the surface contact pressure are deduced by using the simplified contact model. Firstly, we assume that the rough surface is composed of a set of cones as asperities, and the cones are arranged in different ways along two directions. Secondly, according to the mechanical analysis of a rigid conical punch on a half-space, the theoretical relationship between the average pressure of the micro contact area and the property parameters of a conical punch is obtained. Meanwhile, the calculation formula of the average pressure is given under the reasonable assumptions, which is related with the asperity’s deformation and the contact pressure. Finally, combining two theoretical relationships above, the quantitative analysis method for micro asperity’s deformation of two rough surfaces in contact is provided by using the average pressure as a connection bridge.


Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Yuechang Wang ◽  
Abdullah Azam ◽  
Gaolong Zhang ◽  
Abdel Dorgham ◽  
Ying Liu ◽  
...  

Experimental results have confirmed that parallel rough surfaces can be separated by a full fluid film. However, such a lift-off effect is not expected by the traditional Reynolds theory. This paper proposes a deterministic mixed lubrication model to understand the mechanism of the lift-off effect. The proposed model considered the interaction between asperities and the micro-elastohydrodynamic lubrication (micro-EHL) at asperities within parallel rough surfaces for the first time. The proposed model is verified by predicting the measured Stribeck curve taken from literature and experiments conducted in this work. The simulation results highlight that the micro-EHL effect at the asperity scale is critical in building load-carrying capacity between parallel rough surfaces. Finally, the drawbacks of the proposed model are addressed and the directions of future research are pointed out.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Yazhao Zhang ◽  
Hui Cao ◽  
Alexander Kovalev ◽  
Yonggang Meng

A numerical method for modifying cylindrical roller profile was proposed to smooth axial pressure distributions of finite line contacts under the mixed lubrication regime. The mixed lubrication model, in which the Reynolds equation modified by Patir and Cheng has been solved with implementing the rough surface contact model of Kogut and Etsion for the stochastic solution of hydrodynamic pressure and asperity-contact pressure, was established and it is validated by the comparison between simulation results and experiments. Some common roller profiles were carried into the mixed lubrication model and obvious increment of pressure appears near the roller ends or at the central contact area. A numerical running-in method was developed to smooth pressure shapes and the crown drop of roller profile was modified gradually implementing Archard's wear law, where a higher asperity-contact pressure leads to a larger crown drop on a roller profile. The results of the numerical running-in method indicated that pressure distributions of finite line contacts are uniform if the optimized roller profile is employed.


Sign in / Sign up

Export Citation Format

Share Document