A Comparative Study of the Reynolds Equation Solution for Slider and Journal Bearings with Stochastic Roughness on the Stator and the Rotor

2021 ◽  
pp. 107410
Author(s):  
Dimitrios Skaltsas ◽  
Georgios N. Rossopoulos ◽  
Christos I. Papadopoulos
2001 ◽  
Vol 123 (4) ◽  
pp. 755-767 ◽  
Author(s):  
Cheng-Chi Wang ◽  
Cha’o-Ku`ang Chen

This paper studies the bifurcation of a rigid rotor supported by a gas film bearing. A time-dependent mathematical model for gas journal bearings is presented. The finite differences method and the Successive Over Relation (S.O.R) method are employed to solve the Reynolds’ equation. The system state trajectory, Poincare´ maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor center in the horizontal and vertical directions under different operating conditions. The analysis shows how the existence of a complex dynamic behavior comprising periodic and subharmonic response of the rotor center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems.


1986 ◽  
Vol 108 (4) ◽  
pp. 645-654 ◽  
Author(s):  
R. H. Buckholz ◽  
J. F. Lin

An analysis for hydrodynamic, non-Newtonian lubrication of misaligned journal bearings is given. The hydrodynamic load-carrying capacity for partial arc journal bearings lubricated by power-law, non-Newtonian fluids is calculated for small valves of the bearing aspect ratios. These results are compared with: numerical solutions to the non-Newtonian modified Reynolds equation, with Ocvirk’s experimental results for misaligned bearings, and with other numerical simulations. The cavitation (i.e., film rupture) boundary location is calculated using the Reynolds’ free-surface, boundary condition.


1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


1957 ◽  
Vol 24 (4) ◽  
pp. 494-496
Author(s):  
J. F. Osterle ◽  
Y. T. Chou ◽  
E. A. Saibel

Abstract The Reynolds equation of hydrodynamic theory, modified to take lubricant inertia into approximate account, is applied to the steady-state operation of journal bearings to determine the effect of lubricant inertia on the pressure developed in the lubricant. A simple relationship results, relating this “inertial” pressure to the Reynolds number of the flow. It is found that the inertia effect can be significant in the laminar regime.


Author(s):  
Marcel Mahner ◽  
Pu Li ◽  
Andreas Lehn ◽  
Bernhard Schweizer

A detailed elasto-gasdynamic model of a preloaded three-pad air foil journal bearing is presented. Bump and top foil deflections are herein calculated with a nonlinear beamshell theory according to Reissner. The 2D pressure distribution in each bearing pad is described by the Reynolds equation for compressible fluids. With this model, the influence of the assembly preload on the static bearing hysteresis as well as on the aerodynamic bearing performance is investigated. For the purpose of model validation, the predicted hysteresis curves are compared with measured curves. The numerically predicted and the measured hysteresis curves show a good agreement. The numerical predictions exhibit that the assembly preload increases the bearing stiffness (in particular for moderate shaft displacements) and the bearing damping.


2021 ◽  
Vol 37 ◽  
pp. 522-531
Author(s):  
Haiyin Cao ◽  
Yu Huang ◽  
Youmin Rong ◽  
Hao Wu ◽  
Minghui Guo

Abstract In this study, the influence of inlet pocket size on the static performance of non-Newtonian lubricated hole-entry hybrid journal bearings is theoretically analyzed. The oil film of the bearing is discretized into a nonuniform mesh containing the geometric characteristics of the oil inlet pocket, and the inlet pocket is treated as a micro-oil recess. The Reynolds equation is solved by the finite element method based on Galerkin's techniques, and a new solution strategy to solve the recess/pocket pressure is proposed. The power-law model is used to introduce the non-Newtonian effect. The results show that the static performance characteristics of this type of bearing are greatly affected by the pocket size at both zero speed and high speed.


Author(s):  
S. Boedo

This paper presents a hybrid mobility solution approach to the analysis of dynamically loaded misaligned journal bearings. Mobility data obtained for misaligned bearings (calculated from a finite element representation of the Reynolds equation) are compared with existing curve-fitted mobility maps representative of a perfectly aligned bearing. A relative error analysis of mobility magnitude and direction provides a set of misaligned journal bearing configurations (midplane eccentricity ratio and normalized misalignment angle) where existing curve-fitted mobility map components based on aligned bearings can be used to calculate the resulting journal motion. For bearing configurations where these mobility maps are not applicable, the numerical simulation process proceeds using a complete finite element solution of the Reynolds equation. A set of numerical examples representing misaligned main and connecting rod bearings in a four-stroke automotive engine illustrate the hybrid solution method. Substantial savings in computational time are obtained using the hybrid approach over the complete finite element solution method without loss of computational accuracy.


Sign in / Sign up

Export Citation Format

Share Document