Influence of substrate temperature on N-doped ZnO films deposited by RF magnetron sputtering

2007 ◽  
Vol 515 (24) ◽  
pp. 8785-8788 ◽  
Author(s):  
Jinzhong Wang ◽  
Vincent Sallet ◽  
François Jomard ◽  
Ana M. Botelho do Rego ◽  
Elangovan Elamurugu ◽  
...  
2012 ◽  
Vol 12 (3) ◽  
pp. 2503-2508 ◽  
Author(s):  
Georgi P. Daniel ◽  
David Devraj Kumar ◽  
V. B. Justinvictor ◽  
Prabitha B. Nair ◽  
K. Joy ◽  
...  

2010 ◽  
Vol 663-665 ◽  
pp. 1293-1297 ◽  
Author(s):  
Yue Bo Wu ◽  
Sheng Lei ◽  
Zhe Wang ◽  
Ru Hai Zhao ◽  
Lei Huang ◽  
...  

The Al-doped ZnO (AZO) films were deposited on the glass substrates by RF magnetron sputtering at different substrate temperatures. The effect of substrate temperature on the structural, optical, and electrical properties of AZO films was investigated. The results indicate each of the films has a preferential c-axis orientation. The grain size increases with substrate temperature increasing. All the films exhibit a high transmittance in visible region and have sharp ultraviolet absorption characteristics. The resistivity decreases with substrate temperature increasing up to 250oC, then increases for higher temperature.


NANO ◽  
2008 ◽  
Vol 03 (06) ◽  
pp. 469-476 ◽  
Author(s):  
K. SARAVANAKUMAR ◽  
V. SENTHILKUMAR ◽  
C. SANJEEVIRAJA ◽  
M. JAYACHANDRAN ◽  
V. GANESAN ◽  
...  

ZnO thin films were grown by the RF magnetron sputtering technique at different substrate temperatures, from RT to 300°C. The crystallite size was calculated from XRD and the grain size was measured from AFM for different substrate temperatures. The influence of the substrate temperature on the electrical properties of the films was investigated through the Hall effect, and conductivity studies were performed under UV light illumination. The conductivity and the carrier mobility of the films were found to increase with increasing substrate temperature, which can be due to the grain-boundary-dominated conduction mechanism. The thermal activation energy and photosensitivity of the films were calculated, and the results are presented in this paper.


2008 ◽  
Vol E91-C (10) ◽  
pp. 1649-1652 ◽  
Author(s):  
K. MUTO ◽  
S. ODASHIMA ◽  
N. NASU ◽  
O. MICHIKAMI

2013 ◽  
Vol 832 ◽  
pp. 281-285
Author(s):  
S. Najwa ◽  
A. Shuhaimi ◽  
N. Ameera ◽  
K.M. Hakim ◽  
M. Sobri ◽  
...  

Indium tin oxide was prepared using RF magnetron sputtering at different substrate temperature. The morphological and electrical properties were investigated. Morphological properties were observed by atomic force microscopy. Electrical properties were measured using standard two-point probe measurements. The result shows that the average roughness and peak to valley value are highest at high substrate temperature. The watershed analysis shows that the total grain boundaries are highest at the substrate temperature of 200°C. The lowest resistivity value of 9.57×10-5 Ωcm is obtained from ITO nanocolumn deposited at substrate temperature of 200°C. The improvement of morphological and electrical properties as transparent conducting oxide was observed from ITO nanocolumn deposited at substrate temperature of 200°C.


2015 ◽  
Vol 7 (8) ◽  
pp. 1640-1648 ◽  
Author(s):  
P. Kondaiah ◽  
V. Madhavi ◽  
M. Chandra Sekhar ◽  
G. Mohan Rao ◽  
S. Uthanna

Sign in / Sign up

Export Citation Format

Share Document