Ultra-high quality surface passivation of crystalline silicon wafers in large area parallel plate reactor at 40 MHz

2009 ◽  
Vol 517 (23) ◽  
pp. 6401-6404 ◽  
Author(s):  
J. Damon-Lacoste ◽  
L. Fesquet ◽  
S. Olibet ◽  
C. Ballif
2020 ◽  
Vol 89 (1) ◽  
pp. 10101
Author(s):  
Chisato Niikura ◽  
Yuta Shiratori ◽  
Shinsuke Miyajima

We fabricated hydrogenated amorphous Si (a-Si:H) passivation layers on the surfaces of Si wafers by using triode-type plasma-enhanced chemical vapor deposition with gas-heating, and discussed high-quality surface passivation for Si heterojunction solar cells. The sample with the a-Si:H layers corresponding to the highest proportion of SiHx(x=2,3) content in SiHx(x=1–3) content exhibited the minimum surface recombination velocity (S) after annealing. This suggests that using SiHx(x=2,3)-rich a-Si:H grown at low-temperature as a passivation layer is advantageous to inhibit an epitaxial growth at the a-Si:H/crystalline Si interface, and that a structural relaxation of the a-Si:H takes place during post-deposition annealing, drastically improving passivation quality. Also, the importance to use a low Tsub and to optimize gas-heating and the triode technique, for obtaining simultaneously higher film quality and abrupt interface, is suggested. Low S obtained for our unoptimized samples implies the potency of this deposition technique. Nevertheless, further studies are needed to elucidate the impact of gas-heating and the triode technique on Si surface passivation. Temperature-dependent effective carrier lifetime for our samples might suggest relatively large electron affinity for an a-Si:H, which might be one possible reason for high-quality surface passivation.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 174
Author(s):  
Marco Emanuele Discenza ◽  
Carlo Esposito ◽  
Goro Komatsu ◽  
Enrico Miccadei

The availability of high-quality surface data acquired by recent Mars missions and the development of increasingly accurate methods for analysis have made it possible to identify, describe, and analyze many geological and geomorphological processes previously unknown or unstudied on Mars. Among these, the slow and large-scale slope deformational phenomena, generally known as Deep-Seated Gravitational Slope Deformations (DSGSDs), are of particular interest. Since the early 2000s, several studies were conducted in order to identify and analyze Martian large-scale gravitational processes. Similar to what happens on Earth, these phenomena apparently occur in diverse morpho-structural conditions on Mars. Nevertheless, the difficulty of directly studying geological, structural, and geomorphological characteristics of the planet makes the analysis of these phenomena particularly complex, leaving numerous questions to be answered. This paper reports a synthesis of all the known studies conducted on large-scale deformational processes on Mars to date, in order to provide a complete and exhaustive picture of the phenomena. After the synthesis of the literature studies, the specific characteristics of the phenomena are analyzed, and the remaining main open issued are described.


Sign in / Sign up

Export Citation Format

Share Document