Synthesis and investigation of π-conjugated azomethine self-assembled multilayers by layer-by-layer growth

2010 ◽  
Vol 518 (18) ◽  
pp. 5115-5120 ◽  
Author(s):  
Masakazu Kamura ◽  
Yasutaka Kuzumoto ◽  
Shigeru Aomori ◽  
Hirohiko Houjou ◽  
Masatoshi Kitamura ◽  
...  
1997 ◽  
Vol 488 ◽  
Author(s):  
DeQuan Li ◽  
M. Lütt ◽  
Xiaobo Shi ◽  
M. R. Fitzsimmons

AbstractThe layer-by-layer growth of film structures consisting of sequential depositions of oppositely charged polymers and macrocycles (ring-shaped molecules) have been constructed using molecular self-assembly techniques. These self-assembled thin films were characterized with X-ray reflectometry, which yielded (1) the average electron density, (2) the average thicknesses, and (3) the roughness of the growth surface of the self-assembled multilayer of macrocycles and polymers. These observations suggest that inorganic-organic interactions play an important role during the initial stages of thin-film growth, but less so as the thin film becomes thicker. Optical absorption techniques were also used to characterize the self-assembled multilayers. Phorphyrin and phthalocyanine derivatives were chosen as the building blocks of the self-assembled multilayers because of their interesting optical properties.


2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


2020 ◽  
Vol 11 (24) ◽  
pp. 10548-10551
Author(s):  
Aswani Sathish Lathika ◽  
Shammi Rana ◽  
Anupam Prasoon ◽  
Pooja Sindhu ◽  
Debashree Roy ◽  
...  

2003 ◽  
Vol 42 (Part 2, No. 5A) ◽  
pp. L445-L447 ◽  
Author(s):  
Norio Onojima ◽  
Jun Suda ◽  
Hiroyuki Matsunami

Langmuir ◽  
2002 ◽  
Vol 18 (10) ◽  
pp. 4020-4029 ◽  
Author(s):  
Erica S. Forzani ◽  
Marcelo Otero ◽  
Manuel A. Pérez ◽  
Manuel López Teijelo ◽  
Ernesto J. Calvo

Sign in / Sign up

Export Citation Format

Share Document