Mechanized tunnelling in hydrothermally altered grounds: The effect of hydrothermal fluids on the rock behaviour in the central Iran

2020 ◽  
Vol 99 ◽  
pp. 103340
Author(s):  
Arash Hashemnejad ◽  
Seyed Mahmoud Fatemi Aghda ◽  
Mehdi Talkhablou
2020 ◽  
Author(s):  
Marc Laflamme ◽  
◽  
Seyed Hamid Vaziri ◽  
Mahmoud Reza Majidifard ◽  
Simon Darroch
Keyword(s):  

2020 ◽  
Vol 13 (6) ◽  
pp. 694-707
Author(s):  
Leila Yaghmaei ◽  
Saeed Soltani Koupaei ◽  
Reza Jafari

2020 ◽  
Vol 105 (11) ◽  
pp. 1712-1723
Author(s):  
Yu Zhang ◽  
Pete Hollings ◽  
Yongjun Shao ◽  
Dengfeng Li ◽  
Huayong Chen ◽  
...  

Abstract The origin of stratabound deposits in the Middle-Lower Yangtze River Valley Metallogenic Belt (MLYRB), Eastern China, is the subject of considerable debate. The Xinqiao Cu-Fe-Au deposit in the Tongling ore district is a typical stratabound ore body characterized by multi-stage magnetite. A total of six generations of magnetite have been identified. Mt1 is commonly replaced by porous Mt2, and both are commonly trapped in the core of Mt3, which is characterized by both core-rim textures and oscillatory zoning. Porous Mt4 commonly truncates the oscillatory zoning of Mt3, and Mt5 is characterized by 120° triple junction texture. Mt1 to Mt5 are commonly replaced by pyrite that coexists with quartz, whereas Mt6, with a fine-grained foliated and needle-like texture, commonly cuts the early pyrite as veins and is replaced by pyrite that coexists with calcite. The geochemistry of the magnetite suggests that they are hydrothermal in origin. The microporosity of Mt2 and Mt4 magnetite, their sharp contacts with Mt1 and Mt3, and lower trace-element contents (e.g., Si, Ca, Mg, and Ti) than Mt1 and Mt3 suggest that they formed via coupled dissolution and reprecipitation of the precursor Mt1 and Mt3 magnetite, respectively. This was likely caused by high-salinity fluids derived from intensive water-rock interaction between the magmatic-hydrothermal fluids associated with the Jitou stock and Late Permian metalliferous black shales. The 120° triple junction texture of Mt5 suggests it is the result of fluid-assisted recrystallization, whereas Mt6 formed by replacement of hematite as a result of fracturing. The geochemistry of the magnetite suggests that the temperature increased from Mt2 to Mt3 and implies that there were multiple pulses of fluids from a magmatic-hydrothermal system. Therefore, we propose that the Xinqiao stratiform mineralization was genetically associated with multiple influxes of magmatic hydrothermal fluids derived from the Early Cretaceous Jitou stock. This study demonstrates that detailed texture examination and in situ trace-elements analysis under robust geological and petrographic frameworks can effectively constrain the mineralization processes and ore genesis.


2009 ◽  
Vol 45 (6) ◽  
pp. 913-915 ◽  
Author(s):  
Javad Safaei-Ghomi ◽  
Zahra Djafari-Bidgoli ◽  
Hossein Batooli

2021 ◽  
Vol 13 (1) ◽  
pp. 166-187
Author(s):  
Hao Liu ◽  
Chan Wang ◽  
Yong Li ◽  
Jianghong Deng ◽  
Bin Deng ◽  
...  

Abstract The black rock series in the Qiongzhusi Formation contains important geochemical information about the early Cambrian tectonic and ecological environment of the southwestern Yangtze Block. In this paper, major, trace, and rare earth element data are presented in an attempt to reveal the sediment source during the deposition of the early Cambrian Qiongzhusi Formation and to reconstruct the sedimentary tectonic environment and weathering intensity during that time. The basin primarily received continental clastic material with neutral-acidic igneous rocks from a stable source and with a moderate level of maturity during the depositional period of the Qiongzhusi Formation. Furthermore, the strata were weakly influenced by submarine hydrothermal fluids during diagenesis. The reconstruction of the sedimentary environment and weathering intensity shows that P2O5 enrichment and water body stratification occurred due to the effects of upwelling ocean currents during the depositional period of the Qiongzhusi Formation. The combination of upwelling and bottom-water hydrothermal fluids led to environmental changes in the study area, from dry and hot to moist and warm. Last, the reconstruction of the tectonic environment of the Qiongzhusi Formation indicates that deposition occurred in continental slope and marginal marine environments associated with a continental arc tectonic system. These findings provide an essential basis for the comprehensive reconstruction of the early Cambrian sedimentary environment of the Yangtze Block.


2021 ◽  
pp. 104752
Author(s):  
Masoumeh Gheiasvand ◽  
Karl B. Föllmi ◽  
Gérard M. Stampfli ◽  
Christian Vérard ◽  
Valeria Luciani ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mojtaba Bahreh ◽  
Bahador Hajimohammadi ◽  
Gilda Eslami

Abstract Objective Toxoplasmosis, caused by Toxoplasma gondii, infects humans by consuming infected raw or undercooked meat and foods harboring mature oocysts. In this study, we assessed the prevalence of T. gondii in sheep and goats coming from central Iran. After completing the questionnaire, about one gram of liver or diaphragm tissue was taken as a sample from 90 sheep and 90 goats slaughtered in Yazd Province and stored at – 20 ºC. DNA extraction was done, and then T. gondii was detected using nested PCR. Results This study indicated that the prevalence of T. gondii in all slaughtered animals was 11.6% (21 of 180), including 14.4% (13/90) in sheep and 8.8% (8/90) in goats. The infection rates in liver and diaphragm samples were 12.2% (11/90) and 11.1% (10/90), respectively (p = 0.8163). The infection rate in animals older than one was 16.3% (15/92), and it was 6.8% (6/88) in animals under one year of age. Therefore, no significant differences were found (p = 0.475). Infection rates were 19.5% (18/92) in males and 3.4% (3/88) in females (p = 0.0007). In conclusion, the infection rates of toxoplasmosis in livestock in this area are almost high, and therefore, it is necessary to design appropriate prevention programs to control the disease.


Sign in / Sign up

Export Citation Format

Share Document