Dynamic response of internally nested hemispherical shell system to impact loading

2017 ◽  
Vol 120 ◽  
pp. 29-37 ◽  
Author(s):  
Jianxing Hu ◽  
Guoyun Lu ◽  
Huiwei Yang ◽  
T.X. Yu ◽  
Jun Xu
Author(s):  
Zhen Li ◽  
Qiang Gao ◽  
Liangmo Wang ◽  
Jun Tang

To investigate their in-plane dynamic response, a rigid plate with mass was given an initial velocity to impact (square) honeycombs in the X1 and X2 directions, respectively. Firstly, the impact model was built and validated. Then, impact resistance capacity research was conducted. Results showed that each honeycomb performed similarly in X1 and X2 directions, and the reentrant honeycomb usually used smaller displacement and time to absorb the same amount of kinetic energy. Thus, it is better for application if these factors were the main concerns. After that, the nominal stress at the proximal and distal ends were discussed under various impact velocities. It is shown that, under impact loading, the reentrant honeycomb generally showed higher initial peak stress as well as lower plateau stress at both proximal and distal ends. In addition, combining these with the deformation process of honeycombs, it was concluded that the formation of the plateau area of the nominal stress curve is related to the crushing displacement of the impact plate as well as the collapse of cells.


2012 ◽  
Vol 26 (10-11) ◽  
pp. 1467-1479 ◽  
Author(s):  
Zhou-lian Zheng ◽  
Wei-ju Song ◽  
Chang-jiang Liu ◽  
Xiao-ting He ◽  
Jun-yi Sun ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 02014
Author(s):  
Luigi Fenu ◽  
Francesco Aymerich ◽  
Luca Francesconi ◽  
Daniele Forni ◽  
Nicoletta Tesio ◽  
...  

The dynamic behaviour of earthen materials reinforced with natural fibres is little studied although earth buildings are often built in seismic areas. In this paper the dynamic behaviour of an earthen material reinforced with hemp fibres under different impact loadings has been experimentally investigated. The dynamic response of the material in 3-point bending was investigated through an instrumented dropweight device, while the response in tension and in compression was investigated through a modified Hopkinson bar device. Typical impact response curves for tension, compression and bending impact tests have been obtained. The favourable effect of fibres in dissipating fracture energy under impact loads has been observed in all these types of test.


2019 ◽  
Vol 19 (08) ◽  
pp. 1950091 ◽  
Author(s):  
Wuchao Zhao ◽  
Jiang Qian

Reinforced concrete (RC) beams under the impact loading are typically prone to suffer shear failure in the local response phase. In order to enhance the understanding of the mechanical behavior of the RC beams, their dynamic response and shear demand are numerically investigated in this paper. A 3D finite-element model is developed and validated against the experimental data available in the literature. Taking advantage of the above calibrated numerical model, an intensive parametric study is performed to identify the effect of different factors including the impact velocity, impact mass and beam span-to-depth ratio on the impact response of the RC beams. It is found that, due to the inertial effect, a linear relationship exists between the maximum reverse support force and the peak impact force, while negative bending moments also appear in the shear span. In addition, the local response of the RC beams can be divided into a first impact stage and a separation stage. A shear plug is likely to be formed near the impact point at the first impact stage and a shear failure may be triggered near the support by large support forces. Based on the simulation results, simplified methods are proposed for predicting the shear demand for the two failure modes, whereas physical models are also established to illustrate the resistance mechanism of the RC beams at the peak impact force. By comparing with the results of the parametric study, it is concluded that the shear demand of the RC beams under the impact loading can be predicted by the proposed empirical formulas with reasonable accuracy.


2013 ◽  
Vol 364 ◽  
pp. 172-176
Author(s):  
Hui Wei Yang ◽  
Bin Qin ◽  
Zhi Jun Han ◽  
Guo Yun Lu

The dynamic response of fluid-filled hemispherical shell in mass impact is studied by experiment using DHR9401. Combining the time history of impact force with experimental observation of the deformation process, it can be seen that the dynamic response can be divided into four stages: the flattening around the impact point, the forming and expanding outward of shell plastic hinge, the plastic edge region flatten by the punch, and elastic recovery. The experimental results show that: Because the shell filled with liquid, the local impact load that the shell suffered is translated into area load and loads on the inner shell uniformly, so that it has a high carrying capacity. Numerical simulation is used to study the time history of energy absorption of different shell structures. The result shows that the crashworthiness of sandwich fluid-filled shell is improved greatly. Under the certain impact energy, deformation of its inner shell is very small, which can provide effective security space.


Sign in / Sign up

Export Citation Format

Share Document